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INTRODUCTION - MODES AND MECHANISMS OF HEAT TRANSFER

e Thermodynamics deals with heat and work
Interactions

 Thermodynamics deals with end states of process
interaction and no information on nature of
interaction or the time rate

e Heat transfer supplements thermodynamic
analysis by probing modes of heat transfer. It
deals with numerical relations of heat transfer
rates

* Heat transfer knowledge in conjunction with first
law of thermodynamics aid in solution to
technological problems



What is heat transfer and how is heat transferred?

Heat transfer or heat is thermal energy in transit due to spatial temperature
difference

Temperature gradient in a solid medium or fluid results in heat transfer by
conduction

Heat transfer between a surface and a moving fluid that are at different
temperatures is called convection

All surfaces of finite temperature emit heat in the form of electromagnetic
waves . Such net heat transfer is called thermal radiation

Conduction through a solid Convection from a surface Met radiation heat exchange
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Physical origin of rate equation - Conduction

Conduction is the transfer of energy from more energetic particle to less
energetic particle due to their mutual interaction

Temperature at a point in medium corresponds to random translation
motion, rotation and vibrational motion of molecules

Energy transfer occurs either by collision of molecules or by random motion
in the presence of temperature gradients

In solids, thermal energy transfer occurs due to lattice vibrations and
translational motion of free electrons
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Heat rate equation for conduction — Fourier’s law

** For one dimensional plane wall having temperature distribution T(x) , the rate

equation is expressed as: =

dT . -‘

a7 = k=

dax

T,
< Heat flux q” (W/m?) in x-direction perpendicular to ,_ w
direction of heat transfer is proportional to dT/dx
** Parameter k, is a transport property known as thermal
conductivity (W/m.K) is characteristic of wall material g
** Minus sign is a consequence of fact that heat is transferred =&
in the direction of decreasing temperature
¢ Under steady state conditions, temperature distribution is

linear and the temperature gradient becomes: ar — L-T
dx L
L -T - I -1 AT
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¢ Heat rate by conduction, g, (W) through a plane wall of area Ais then q,” . A
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Heat rate equation for convection — Newton’s law of cooling

Convection heat transfer mode comprise
of two mechanisms: random molecular
motion (diffusion) and bulk/macroscopic
motion of fluid

Convection is referred to cumulative
transport and advection refers to bulk
fluid motion alone

Fluid - surface interaction results in the
formation of hydrodynamic boundary
layer

In case of thermal gradient between
surface and flow temperature, thermal
boundary layer is developed

Boundary layer phenomenon governs an
important role in convective heat transfer
mode

In convection mode, sensible heat and
latent heat exchange are feasible
Convective heat transfer coefficient
depends upon boundary layer
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Physical origin of rate equation — thermal radiation

Regardless of the form of matter, thermal energy emitted at non-zero
temperature is attributed to change in electronic configuration of constituent
atoms or molecules

Radiation emitted by the surface originates from thermal energy of the
matter bounded by the surface and the rate at which energy is released is
termed as surface emissive power . As per Stefan Boltzmann's law for a black
body and real surfaces are respectively: [FE, = gT* E=¢e0 }"1_4

Radiation may also be incident on a surface from its surroundings and the
rate at which radiation is incident is termed as irradiation, G =~ (5. = (s

a depends upon nature of irradiation and surface itself. While € depends on
surface and finish of the material
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Physical origin of rate equation — thermal radiation

s A special case that occurs frequently in engineering involves radiation
exchange between small surface at T, and much larger surface that
completely surrounds small one

* For such condition, irradiation can be approximated as emission from
blackbody at T, G = 0T,

* |f the surface is assumed to have a = € then net radiation heat transfer from
the surface expressed per unit area of the surface is:

&= % — ¢E,(T,) - oG = e0(T* — T)
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* For many applications it is convenient to express net radiation exchange in

the form: dea = AT, — To,)
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The radiation heat transfer coefficient h; is :

h, = eo (T, + T, N1 + T)



Relationship to first law of thermodynamics

¢ For a closed system, first law of thermodynamics states that
AES = Q- W
where AE™ is the change in the total energy stored in the system,

Q is the net heat transferred to the system, and W is the net work
done by the system

Total energy
Etl:
|
Intarnal energy
U
_______________ A —
|

Sensible Latent Kinetic Potantial
o i KE PE




Relationship to first law of thermodynamics

1. Conservation of Total Energy: First Law of Thermodynamics over a Time
Interval (A7)

The increase in the amount of energy stored in a control volume must equal the amount of energy
that enters the control volume, minus the amount of energy that leaves the control volume.

Sum of thermal and mechanical energy is not conserved

2. Conservation of Thermal and Mechanical Energy over a Time Interval (Af)

The increase in the amount of thermal and mechanical energy stored in a control volume must
equal the amount of thermal and mechanical energy that enters the control volume, minus the
amount of thermal and mechanical energy that leaves the control volume, plus the amount of
thermal and mechanical energy that is generated within the control volume.

3. Conservation of Thermal and Mechanical Energy at an Instant (f)

The rate of increase of thermal and mechanical energy stored in a control volume must equal the
rate at which thermal and mechanical energy enters the control volume, minus the rate at which
thermal and mechanical energy leaves the control volume, plus the rate at which thermal and
mechanical energy is generated within the control volume.




Relationship to first law of thermodynamics

AE, = E, - E, +E,
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First law of thermodynamics application to
control volume

dE,

E,=—
dt

= Ein o Enut T E

£

¢ Under steady state operation with no thermal and mechanical energy
generation, the above equation reduces to steady flow energy equation

m(u, + pv+ BV2+ gz), —mlu, + pv+ %BV2 +g2) +qg—W =10

% Since the sum of thermal energy and flow work is enthalpy, and for
incompressible fluid steady flow thermal energy equation is given by:
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Relationship to second law of thermodynamics and
efficiency of heat engine

Heat engine is any device that operates continuously or cyclically and that converts
heat to work

Examples : internal combustion engines, power plants, and thermoelectric devices
Second law of thermodynamics states that:

It is impossible for any system to operate in a thermodynamic cycle and deliver a
net amount of work to its surroundings while receiving energy by heat transfer
from a single thermal reservoir
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Any real heat engine, which will necessarily undergo an irreversible process, will
have an efficiency lower than n_

For heat transfer to occur, there must be a nonzero temperature difference
between the reservoir and the heat engine. This reality introduces irreversibility
and reduces the efficiency



Relationship to second law of thermodynamics and
efficiency of heat engine

Consider a more realistic model of a heat
engine in which heat is transferred into the
engine through a thermal resistance R, and
heat is extracted through second thermal
resistance R,

" . . _ Internally
Thermal resistances are associated with heat Heat engine reversible ~ —> W

walls

High-temperaturs
reservoir )
High-temperature - & l_

side resistance |_

. heat engine
transfer between the heat engine and the .
reservoirs across a finite temperature [lowtemperatue -
- ) side resistance 0, |_
dlfference, by way of the mechanisms of Low-temperature I

reservoir

conduction, convection, and/or radiation
T, <Tpand T ;> T,

Modified efficiency that accounts for realistic . Ot [ Gow _ T,
(irreversible) heat transfer processes — n,, Im = 0. W T,

of

As the ratio of heat flows over a time interval,
Q,./Q, has been replaced by the
corresponding ratio of heat rates, g,,,/q;,



Relationship to second law of thermodynamics and
efficiency of heat engine

Utilizing thermal heat resistance concept, the
heat transfer rates into and out of engine are :

High-temperaturs r
reservoir ) — Ik
din = (?Tﬁ: _ n,j)fR;ﬂ High-temperature _ & @ l_
' : side resistance L
_ — T,
Gowt — {?::,E - ?—;)"‘ch I "
. nternally
Heat engine reversible — W
. . walls heat engine
Solving for internal temperatures: -
Low-temperature -
?;1,5 = T}] = Qinth side resistance 0. |_
— T.
_ Low—ter_nperature ‘
T-:'.‘,E = I: + q'cnutR.t,r = Tr + lgin(l - nm)RI,-:" reservoir

More realistic modified efficiency is:

X - T;‘ g fj"m“ B };'lm)Rr.f % =1- Gout =1= T';J-

Nm = | = L= l Nw = = _
! T.F:,i ?}: = qur,h O g L
Solving for n,,: Power output of heat engine is:
T,
n, =1- - ' 1.
" — (1: W - tr:il‘in'r;"m = qm|:l o :|
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A quick note on Units and dimensions

Quantity and Symbol Unit and Symbol

Length (L) meter (m)

Mass (m) kilogram (kg)

Amount of substance mole (mol)

Time (f) second (s)

Electric current () ampere (A)

Thermodynamic temperature (1) kelvin (K)

Plane angle® (8) radian (rad)

Solid angle® (@) steradian (sr)

Name Expression

Quantity and Symbaol Formula in S1 Base Units
Force newton (N) m - keg/s® m - kgfs’
Pressure and stress pascal (Pa) N/m* kg/m - &
Energy joule (1) N-m m’ - kg/s®

Power watt (W) Iis m” - kg/s’




Analysis of Heat transfer problems - Methodology

Known: After carefully reading the problem, state briefly and concisely what is known about
the problem. Do not repeat the problem statement.

Find: State briefly and concisely what must be found

Schematic: Draw a schematic of the physical system. If application of the conservation laws is
anticipated, represent the required control surface or surfaces by dashed lines on the
schematic. Identify relevant heat transfer processes by appropriately labeled arrows on the
schematic

Assumptions: List all pertinent simplifying assumptions

Properties: Compile property values needed for subsequent calculations and identify the
source from which they are obtained

Analysis: Begin your analysis by applying appropriate conservation laws, and introduce rate
equations as needed. Develop the analysis as completely as possible before substituting
numerical values. Perform the calculations needed to obtain the desired results

Comments: Discuss your results. Such a discussion may include a summary of key
conclusions, a critique of the original assumptions, and an inference of trends obtained by
performing additional what-if and parameter sensitivity calculations




Applications of heat transfer

Energy conservation
Gas turbines
Cooling of electronic equipment

Bio-medical engineering

Mode Mechanismis) Rate Equation

Conduction Diffusion of energy due gr(Wim?) = —k—
to random molecular X
motion

Convection Diffusion of energy due g (Wim*) = KT, — T.)

to random molecular
motion plus energy
transfer due to bulk
motion (advection)
Radiation Energy transfer by g (Wim?) = eai(T} - T2)
electromagnetic waves or (W)= h AT, - T,.)
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1D Conduction

From the previous lecture it was introduced that:

Conduction is the transfer of energy from more energetic particle to less
energetic particle due to their mutual interaction

Temperature at a point in medium corresponds to random translation
motion, rotation and vibrational motion of molecules

Energy transfer occurs either by collision of molecules or by random motion
in the presence of temperature gradients

In solids, thermal energy transfer occurs due to lattice vibrations and
translational motion of free electrons
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1D Conduction

*¢ Heat transfer is governed by Fourier’s law and in order to determine heat
flux knowledge of temperature distribution is essential

+*»* Fourier’s law is applicable to 1D, 3D transient multidimensional conduction in
complex geometries

The objectives of this lecture are:

» What is the fundamental origin of Fourier’s law?

» What form does it take for different geometries?

» How does thermal conductivity depends upon nature of medium?

» Our primary objective is to derive heat equation from basic principles which
governs temperature distribution in the medium in which conduction is the

only mode of heat transfer

» Solution to heat equation provides knowledge of temperature distribution
that is subsequently used in Fourier law to determine heat flux



Conduction rate equation

¢ Fourier’s law is phenomenological — is derived from observed phenomena
rather than being derived from first principles

A cylindrical rod of known material is insulated on its AT=T,-T,
lateral surface, while its end faces are maintained at S SRS IS R,
different temperatures, with T, > T, L() g—> 1
We are able to measure the heat transfer rate q,, and R ﬁ T
. . -t x [
seek to determine how q, depends on the following .

variables: A T, the temperature difference; Ax, the rod
length; and A, the cross-sectional area

A AT On changing the material from metal to
dx = Ax plastic Fourier’s law is still valid however q, is
smaller in this case
AT dT n_ G dr
q, = kA— = A— —> ¢y = — = —k— — Eq.1

k, the thermal conductivity (W/m - K), is an
important property of the material



Conduction rate equatio

n_ﬂh
¢ Eq.1 implies that the heat flux is a directional .
quantity. In particular, the direction of q”, is normal 1\
to the cross-sectional area A \ m
¢ The direction of heat flow will always be normal to a T,
surface of constant temperature, called an isothermal
=1

surface. Isothermal surfaces are planes normal to x-
direction q g

f T TS |

I

s As heat flux is a vector quantity, a more genera ]/
|

statement of conduction rate equation (Fourier’s law): »

/]
|sotherm
dT dT aT o

"= —kVT = —-k| i ] k —
I [‘ax”ay* azJ Eq.2

V is the three-dimensional del operator, i, j, and k are the
unit vectors in the x, y, and z directions, and T(x, y, z) is the
scalar temperature field



Conduction rate equation

*¢ Heat flux vector is in a direction perpendicular to the
isothermal surfaces

dT
L S
q” = q,/n = kaﬂﬂ — Eq.3a ..
q__'l'_______Eﬂ
% q”, is the heat flux in a direction n, which is normal to an |
isotherm and when resolved in terms of Cartesian i
coordinates: q.
- L] :"I
q” — “}"_:-r T JQ:I‘F k{?;! N Eq.3b |sotherm [
-1
dT dt JT
V= —k— ql=—k— = —k— — ,
q x q, PR q-: oz Eq.3c

% Eq. 2 implies that the medium is isotropic implying that
the value of thermal conductivity is independent of
coordinate direction. Fourier’s law is valid for all matter
regardless of its state (solid, liquid or gas)



Thermal properties of matter

L/
** ksolid>> kquuid>> kgas

4

D)

% In solids the transport of thermal
energy is due to : migration of free
electrons and lattice vibrational
waves

 In pure metals, the electron
contribution dominates conduction
heat transfer; while in
nonconductors and semiconductors
phonon contribution is dominant

s* From kinetic theory of gases

1 __
k = gCClmrP

Zinc Silver
PURE METALS
Nickel Alurminum
ALLOYS
Plastics Ice Oxides
NONMETALLIC SOLIDS
Foams Fibers
INSLLATION SYSTEMS
Oils Water Mercury
e ton LIQUIDS
dioxide Hydrogen
GASES

0.01 0.1 1 10 100 1000
Thermal conductivity (W/m=K)

For metals: C— electron specific heat per unit
volume, c¢ is the mean electron velocity, and
A mip = A . Is the electron mean free path

For metals: C— phonon specific heat per unit
volume, ¢ is average speed of sound, and

A o = A phonon 1S the electron mean free path



Thermal properties of matter

When electrons and phonons carry thermal
energy leading to conduction heat transfer in
a solid, the thermal conductivity may be
expressed as

k =k, +ky

k, is inversely proportional to the electrical
resistivity, p,. For pure metals, which are of
low p,, k. is much larger than k,

For nonmetallic solids, k is determined
primarily by k., which increases as the
frequency of interactions between the atoms
and the lattice decreases

Thermal conductivity (W/m-K)
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Temperature (K)



Conductivity: Solid state micro and nanoscale effects

In microelectronics industry, the material’s
characteristic dimensions can be on the order
of micrometers or nanometers and hence
significant modification of k occurs

Cross sections of films of the same material
having thicknesses L, and L, are shown in
Figure

L/N s, has significant effect on k and hence k
decreases as the above ratio decreases

2.5

L =98 nm

2 L=55nm

1.5

Thermal conductivity ('Wim+K)

0.5

L=32 nm

L=23nm

L=10nm

Amsp (T'= 300 K) = 25 nm

0 100 200 300

Temperature (K)

400
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Thermal conductivity in fluid state

In both liquids and gases the intermolecular
spacing is more random than solid: thermal
energy transport is less effective

From kinetic theory of gases , k is directly
proportional to density of gas p, mean
molecular speed ¢, and mean free path, )\mfp, is
the average distance travelled by a molecule
before collision is:

P
k = gcupﬂ‘&'mfp

It is presumed that k is independent of gas
pressure except when conditions approach
perfect vacuum

Thermal conductivity (W/m-K)

0.3

e
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o
—

28.97,0.372

Hydrogen

M=2016,d=0.274

Helium 4.003, 0.219

Water

(steam, 1 atm)
18.02, 0.458

Carbon dioxide

44.01, 0.464
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Thermal conductivity in fluid state

* Molecular conditions associated with liquid
are difficult to describe and hence physical
mechanisms of k are not well understood

0.8

Water
* kof liquids is insensitive to pressure except

near thermodynamic critical point o8

e k generally decreases with increasing
molecular weight

Ammonia

e Liquid metals are commonly used in high 2°%*

heat flux applications such as nuclear
power plants since their k is much larger - \
0.2

Glycering e

Thermal conductivity (W/m-K)

than nonmetallic liquids

* In liquids too bulk thermal conductivity is 2

affected when a fluid is constrained by a N{m b’ oil

small physical dimension (L/A,)

 Nanofluids are used in applications to
tailor k

a
200 300 400 500
Temperature (K)



Insulation systems

Thermal insulations consist of low thermal conductivity materials

In conventional fiber-, powder-, and flake-type insulations, the solid material
is finely dispersed throughout an air space

A special parameter of the system is its bulk density (solid mass/total
volume), which depends strongly on the manner in which the material is
packed

Micro- and nanoscale effects can influence the effective k of insulating
materials as shown below for nanostructured silica aerogel

0.014

0.012

0.01

0.008

0.006

0.004

0.002

Effective thermal conductivity (W/m=K)

10-32 10-2 10-1 100
Pressure (atm)



Thermophysical properties relevant to heat
transfer problems

Thermophysical properties include two distinct categories, transport and
thermodynamic properties:

The transport properties are the diffusion rate coefficients such as k, the thermal

conductivity (for heat transfer), and v , the kinematic viscosity (for momentum
transfer)

Density (p) and specific heat (c,) are two such properties used in thermodynamic
analysis

The product pc, (J/m3-K), commonly termed the volumetric heat capacity,
measures the ability of a material to store thermal energy

Substances of large density are typically characterized by small specific heats, many
solids and liquids, which are very good energy storage media

iy — —
pc,

Materials of large will respond quickly to changes in their thermal environment,
whereas materials of small will respond more sluggishly, taking longer to reach
a new equilibrium condition
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Heat Diffusion Equation- significance

A major objective in a conduction analysis is to determine the temperature field in
a medium resulting from conditions imposed on its boundaries

Once the temperature distribution is known the conduction heat flux at any point
in the medium is computed from Fourier’s law

Knowledge of temperature distribution can be used to ascertain structural
integrity by determining thermal stresses, expansions and deflections

Temperature distribution knowledge aids to optimize thickness of insulating
material or determine compatibility of special coatings or adhesives used with
material



Heat Diffusion Equation- methodology

» Apply the energy conservation for a particular control volume based on first law
of thermodynamics

»Define a differential control volume, identify the relevant energy transfer
processes and introduce appropriate rate equations

»The resultant derived differential equation whose solution for a prescribed
boundary conditions, provides temperature distribution in the medium

e,
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Conservation of energy for a) closed system over a time interval b) for control volume at an instant



Heat Diffusion Equation- derivation

» Consider a homogeneous medium within which there is no bulk motion and the
temperature distribution T(x, y, z) is expressed in Cartesian coordinates

» By incorporating first law at an instant of time, identify the energy process that are
relevant to control volume. Incompressibility of the medium is assumed in
derivation. There is no mechanical work and only thermal energy is considered

»In case of temperature gradients, conduction heat transfer occurs at control
surfaces 2
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Differential control volume , dx, dy, dz in Cartesian coordinates



Heat Diffusion Equation- derivation

»Conduction heat rates perpendicular to each of the control surfaces at x, vy, z
coordinate locations are indicated by q,, q, and g, respectively

»Conduction heat rates at the opposite surfaces can be expressed as Taylor series
expansion by neglecting higher order terms

a q Tlx, v 2 0
— X
Q.x+£fx _ Q.I.' + ar d'r i l -ﬁql-wdy
' T gm===1=-= A
aq |\ r;l'_]'é- !{x i ,x K i
= ¥ o _"__|______/__ o
Gyrdy = Gy + 5y -1 ¢l
1"‘. | | | |
' T A
{q- " L R & i _r—q’;
Gorage =@, ¥ =42 . A R .
a{, [ ; i ,’r . : ","
X |.r: _____ -i————:",dr
. g, -
Energy generation term, E, A ‘ V
q

E, = gdxdydz

Differential control volume , dx, dy, dz in Cartesian coordinates



Heat Diffusion Equation- derivation

T, y, 2) 4 1+
q , the rate at which energy is T - P
generated per unit volume of the (’fj—'—-:i‘: A AT
medium (W/m?) = VAV
I : : ldz
| 1 . 1
If the material is experiencing changes in internal q—!.,.. b5 i _i__q.,
1 st T+ dx
thermal energy stored in control volume and when R E____I_,_
. Y | , 7
latent heat energy effects are not pertinent, energy |, :/ X E{/
storage term reduces to rate of change of sensible x YA -i----'f’c;}/
energy: e dx | Y
: U oT oT
Ey = —— = pc,—dx dy dz = pc,—dx dy dz 4
ot ot ot

Eg and E, represent different physical processes

'is a manifestation of some energy conversion process involving thermal energy on
one hand and some other form of energy, such as chemical, electrical, or nuclear,
on the other. It can be positive or negative



Heat Diffusion Equation- derivation

On a rate basis, the general form of the

. . . .y, 2) 9+ az
conservation of enerqy requirement is: T .
s S I
L - - - l.ffj- ;_‘:‘: ,/,E Ik f// ;':
— — Nk S A
Ein + Ey — Eou = Eg E>f
-
o . . o : ésl : _i_ Ay 4 ax
Conduction rates constitute energy inflow and outflow - L1

|
: dT
qx + dy +4q, +qg dx (1‘_‘1,.-‘ dz — Grvde — Qy+dy — Yz4d; = pC de d\ dz

I_:Q
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~
~
~
—
\
1
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: 1
1
1
1
[
~
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\ ~|

ﬁqx 5 Therefore rate equation becomes----
Since------ Dxtdr = Yx ar -
aq}, _%dﬁf dq\' d‘}, = a&dz + .{? (ir .d}: dz —_ pcpa_de dr dz
Qysdy = dy T —dy ox dy 0z ot
o a:"‘f
dq
(:+d: = 4: T aj dz



Heat Diffusion Equation- derivation

The conduction heat rates in an isotropic material may be evaluated from Fourier’s law

gy = —k dy a'za—T

0x
g, = —k dx dz‘;—T o
¥ ) afh dr— dq}’ d‘}' _ f)f}z_ dz + q dx (f}! az = p(‘pa—TdX Cii_‘r’ dz
JdT 0x dy 0z r
q. = —k dx dy az

After substitution for q,, g, and g, and dividing by dx dy dz through out the equation:

a(_aT) a(_ar) a(_ar) | oT
k + k + k +q = pc,—
ox\ dx/) dy\ dy) dz\ oz ot

The above equation is the general form of heat diffusion equation



Heat Diffusion equation

8(_8?“) 8(_8?“) a( BTJ oT
k + k + k +4 = pc,—
ox\ dx/) dy\ dy) dz\ 0z ot

**Heat diffusion equation or heat equation is the basic tool for conduction
analysis as we can obtain temperature distribution T (x, y, z) as function of time

**Heat equation describes an important condition of conservation of energy

Ak 9T/9x)/0x qis relate.d to'net.heat conduction flux into the control
volume in x-direction

d ( E)TJ
k— |dx = g — g/
F)‘. a v 1+ {x+dx
At any point in the medium the net rate of energy transfer by conduction into

a unit volume plus the volumetric rate of thermal energy generation must be
equal to rate of change of thermal energy stored within the volume



Various forms of heat equation

Basic heat equation: : (kaT) 0 (kaT]“L ’ (kaT)Jrq - pcp%—j

+
ox\ dx /) dy\ dy) dz\ 0z
T o'T T ¢ 10T
For constant thermal conductivity: + + t-=—=
' dx? oy 9z k  a ot
o =Kkipc, is termed as thermal diffusivity
Under steady state condition, p =15 o S o T
there i.s no change in energy g[ka—xJ + g[kgj + a_z(ng +4g=0
storage:
If heat transfer is one dimensional and i (kgj — 1
dx \ dx

there is no energy generation :

Under steady state, one dimensional conditions with no energy generation, heat flux
is constant in the direction of transfer -------------- dg,”/dx =0



Heat equation in cylindrical coordinates

When the del operator v is expressed in cylindrical coordinates, with i, j, k representing

unit vectors in r, ¢, z directions, the general form Fourier’s law is:

dT 1 0T dT
"= —kVT = -k|li—+ j————+ k— 9z + dz
4 (ar Jr 00 az] 4
\‘</,.--..
i A,
| #__,..-'"" I q
T..{-" ___,..rlf/, ¢+ do
i1 :
IEN
et e
Z ~)
>~ di;\l‘l— f,,,-—’ 9r s dr

9;

Differential control volume dr. rd¢. dz for conduction analysis in cylindrical coordinates



Heat equation in cylindrical coordinates

; oT ) L or ; oT represent heat fluxes in radial,
q- = —kg qo = —}—ﬁ q; = —kE circumferential and axial
) directions respectively

On application of energy balance to differential control volume, the following
general form of heat equation is obtained for cylindrical coordinates

| o aT 1 o(,dT d(, oT _ oT
===l r— |t ——| k= d—| K— | +Ig'= PC, —
roor or re do\ 0o Jdz\ 0z ot
Gz + d.
b v \_ﬁ B I 2
| 5 » .l-"‘"” I 4+ dé
- ‘ - A dz i ‘T i ”li/,
R ] by 1 |
z !f[gl" ”;.f z . 0 /J/:ll_. ‘_L s 1
T(r9.2) RN ! o

r\y_
o
X
[
¢ .
\
[~ [



Heat equation in spherical coordinates

In spherical coordinates with i, j, k representing the unit vectorsinr, U, ¢
directions, the general form of Fourier’s law :

q”z—k‘?Tz—k(ia—T+'laT k : aT]

J— + :
ar r o6 rsin@ 0o

Differential control volume dr. rsinB d¢. rd® for conduction analysis in spherical coordinates



Heat equation in spherical coordinates

o@D e KT,k AT ) heatflux components in the radial
' or ¢ r 06 ¢ rsin® 0 ‘ polar, Qn azimuthal directions,
respectively

On application of energy balance to differential control volume, the following general
form of heat equation is obtained for spherical coordinates

I a( 2aT) 1 o, 0T
k| — k
r* or dr ) r*sin’@ 0\ 0o

| a( oT oT

ksing 2 |+ g = pe.
r?sinf 06 o 86‘) 1= P ot

+

R r “ .
o z —! \\
bl | AN N,
0 dr '\ /i i > radr
I 1 7(r, 9, 6) N ye-=s
o i
= ! 3
Q} = qrﬂ

X



Boundary and initial conditions

To determine the temperature distribution in a medium, it is necessary to solve
the appropriate form of the heat equation

A solution depends on the physical conditions existing at the boundaries of the
medium and, if the situation is time dependent, on conditions existing in the
medium at some initial time

As heat equation is second order in the spatial coordinates, two boundary
conditions must be expressed for each coordinate needed to describe the system

Since heat equation is first order in time, only one condition, termed the initial
condition, must be specified



Boundary conditions for heat diffusion
equation at surface x = 0 for 1D system

Surface maintained at fixed E\

1. Constant surface temperature
temperature T, also termed as
Dirichlet condition. Closely ‘ 70,1 =T, Ttx, 1)
approximated when surface in contact
with melting solid or boiling liquid =%

\\

Neumann or second condition 2. Constant surface heat flux B
corresponds to existence of constant ‘ (a) Finite heat flux & .
heat flux at surface q,”. This heat flux Iz, 0
is related to Fourier’s law at surface. — RE}_T —ag” Ly
Realized by bonding thin film electric dx |, _, ’
heater to surface
A special case of second condition (b) Adiabatic or insulated surface -\T{x 0
exits for perfectly insulated or ‘ Ja| 0 ‘
adiabatic surface ox|._, [
Boundary condition of third kind 3. Convection surface condition
corresponds to existence of convective
heating or cooling of surface and is —k E}_T = W[T. — T(0.1)]
obtained from surface energy balance dax |, - ’ Tix, 1)




HEAT TRANSFER

MODULE 1
1D STEADY STATE HEAT
CONDUCTION

Dr. Satish Idury
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1D steady state conduction — Temp gradient in single coordinate
system and temp at each point is independent of time

Our objectives are to determine for 1D steady state conduction case:
¢ Heat transfer with no generation of internal energy

s Determine expressions for temperature distribution and heat transfer rate in
planar, cylindrical and spherical geometries

** For planar, spherical and cylindrical geometries, introduce the concept of thermal
resistance

** We establish that thermal circuits can model heat flow similar to electrical circuits
for current flow



1D steady state conduction — Plane wall case
“*For 1D conduction in a plane wall, T,

is f i f x- di I \

temperature is function of x-coordinate only L

and heat is transferred exclusively in this 81
direction

=
“*Temp distribution within the wall can be Lrﬂ
obtained by solving heat equation with TTT >4,
appropriate boundary conditions:
Hot fluid
L BR
o) [ oo WY _ |
dx( dx) |—’-‘ x=L
Cold fluid
.0 h

for one-dimensional, steady-state conduction-in a plane wall with no
heat generation, the heat flux is a constant, independent of x

Further if k of wall material is assumed constant, integrating the above equation
twice will give general solution:

T(I) — CI,JC + CZ



1D steady state conduction — Plane wall case

(k) =0 T(0)=Ca+C =

To obtain the constants of integration, C, and TL
C,, boundary conditions must be introduced. T T T T
On applying conditions of the first kind at x =0 |
and x = L, in which case T T T T

- x=L

T(O) = 7-.;‘,] le'ld T(L) — 7-;,.2 . c;i?.;li:

w2

»,

At x = 0, general solution is T,; = C, Atx =L, TE,Z =CL+C, =C/L+ rv,l

?;',2 — 1 Substituting the expression in general
17 = Cl solution of temperature distrﬂtion

X
I'x) = (L;2 — 7;,1)2 + Ty



1D steady state conduction — Plane wall case

®
** For 1D steady state conduction in plane wall with no heat generation and

constant thermal conductivity, temperature varies linearly with x

X/

** To determine heat transfer rate , apply Fourier’s law:

o dT kA(T T
gy = —K == U7 Bt
1 R 7 2

/

¢ For a plane wall heat rate ,q and heat flux, q,” are constant and independent of x

N




Thermal resistance concept

For 1D steady state conduction in plane wall with no heat generation and constant
thermal conductivity, temperature varies linearly with x

o dT kA(T )
g = —K = U7 Bt
1 R I | 2

A perfect analogy exists between the diffusion of heat and electrical charge

An electrical resistance is associated with the conduction of electricity, a thermal
resistance may be associated with the conduction of heat

Hence we can define resistance as the ratio of a driving potential to the corresponding
transfer rate:

T;’I—TS'2= - Esl—ESZ X
5 kA Rez i =O'A

R,

,cond =

Recall perfect similarity between Ohm’s law for electrical conduction and heat
conduction rate



Thermal resistance concept

A thermal resistance is also associated with
heat transfer by convection at the surface

“*From Newton’s law of cooling: ¢ = AA(T, — T} T“‘-l_\
T

5,1
**Thermal resistance for convection is then: \
=T,
' q

11

% Circuit representations provide a useful Hot fluid
tool for both conceptualizing and L1 Iy L | I T I
guantifying heat transfer problems X =L

¢ The equivalent thermal circuit for the Cold fluid
plane wall with convection surface Tz By
conditions as shown in figure is: T.; T, T» T2

—— " VWo——AWN——oAM—0
_ Tw,l =g _ 7;,l = _ 7;,2 — ka0l ﬁ ﬁ ﬁ

& 1/l A L/kA 1/hy A

q, may be determined from separate consideration of each element in the network



Thermal resistance concept

**In terms of overall temperature difference
T.. ;—T. , and total thermal resistance R ,,

Tiq
**Heat transfer rate is expressed as: T\

Eg =13 ‘ \
4x =
Rtot

+*As the conduction and convection resistances T I T

= q.x'

are in series: T
s il
T S kg I '[ I
Rtot = + + L’-" .x'=|L
hA kA hA
Cold fluid
. el
**Radiation exchange between the surface and R
surroundings is important if convection heat T i Tis T3
. . L s AN e A AN AR
transfer coefficient is small and radiation e : Y :
thermal resistance is: hA A hoA
T, — 1
Rt rad — § sur -

rad hrA



The Composite Wall

¢ Equivalent thermal circuits for

T,
complex systems such as T:\\
. : T
composite walls involves any
number of series and parallel
resistances due to different I3
layers of thermal material \ T4
. T T T <—LA—><—LB—><—LC—>
** 1D heat transfer rate for such
system is expressed as: - ky kg ke Los
w0, 11
R A B c
a = 11
2R, L., |
Cold fluid
L K K K 1 Tooa By
_ Tm.l = o 3 7;.] —— T2 3 T2 — T3 B /IIA kAA /\'BA kcA /I4A
dx = S g = - = MW OAMNAOAMN-OAMNOAMNO
(1/h A) (LplkyA)  (LglkgA) £ 7 T T T T e
| N 1
qx =

[(1/hA) + (Lo/kyA) + (LglkgA) + (LolkcA) + (1/h4A))



The Composite Wall

**With composite systems, it is convenient to work with )
overall heat transfer coefficient is defined by expression T~
analogous to Newton’s law of cooling: \
T3
q." = UA AT \T,\A
T T I *~—La Ly Lc_’\
. . Hot fluid ky kg ke T,
**Overall heat transfer is related to total thermal © =.n
. A B (&
resistance : P11
UA = 1 o Cold fluid
- R 1 i Ly /% 1 T, 4 by
tot mA kaA kgA kA A
— OMAOANAAINAAANAOANN-O
1 I ¥ o B B Ta L

U — ==
Ry A  [(1/hy) + (Lplky) + (Lglkg) + (Lolke) + (1/hy)]

AT |
Ry = ZR: = q = UA




Equivalent thermal circuits for series —
parallel composite wall

I [ - L ] Area A
KA2) ke i . _
ke F
I,
ke ke ky
E G H

SR R NN 2 . o 8, A rg TSR ol g X5 g
L ‘s e plan 4 et nm by vl etV eim ot Py el D S *r -
IS I SRy Sl B R M Nl NP R R e 2 T R S T Y R SR S B i

» Although heat flow is multi dimensional
it is reasonable to assume 1D
conditions

» For case (a) it is presumed that surfaces

ki(A12) normal to x direction are isothermal

» For case (b) surfaces parallel to x-
direction are adiabatic

Different results are obtained for R,,, and the corresponding values of q bracket the
actual heat transfer rate. These differences increase with increasing [k: — k[, as
multidimensional effects become more significant



Contact Resistance- Temperature drop

* In Composite systems, the
temperature drop across the
interface between materials may
be appreciable

s*Temperature drop is attributable
to thermal contact resistance, R,

**For a unit area of the interface,
the resistance is defined as:

Ty — Ty

’”
qx

72
R’,C S

The existence of thermal contact resistance is principally due to surface roughness effects

**Heat transfer is due to conduction across actual contact area and due to conduction
and or radiation across the gaps



Contact Resistance- Temperature drop

*¢Contact resistance may be viewed as two parallel resistances: a)
due to contact spots b) due to gaps

**For rough surfaces, contact area is typically small and the major
contribution of resistance is made by gaps —

**For solids whose k exceeds that of interfacial fluid, ' [
the contact resistance may be reduced by increasing
area of contact spots

*»Contact resistance can also be reduced by increasing contact pressure, reducing the
roughness of mating surfaces, selecting interfacial fluid of large k

*»If the characteristic gap width L, becomes small, L/A ., becomes small . Hence k of
interfacial gap is reduced by micro scale effects

mfp’



Thermal contact resistance

Thermal contact resistance for different solid/solid and solid/fluid interfaces

Ihermal Resistance, K7, < 10¢ 1m

(@) Vacoum Interface

S R/W)

Contact pressure 100 kN/m’
Stainless steel 6-25
Copper 1-10
Magnesium 1.5-3.5
Aluminum 1.5-5.0

10000 KN/m
0.7-4.40
0.1-0.5
0.2-04
0.2-04

0y Interfacial Fluld

Air 275
Helium 1.08
Hvdrogen 0.720
Silicone oil 0.525
Glycerine 0.265

Interface R, x 10" (m* - K/W)
Silicon chip/lapped aluminum in air 0.3-0.6
(27-500 kN/m?)

Aluminum/alumir}um with indium foil ~0.07
filler (~100 kN/m~)

Stainless/stainless with indium foil ~0.04
filler (~3500 kN/m?)

Aluminum/aluminum with metallic (Pb) 0.01-0.1
coating

Aluminum/aluminum with Dow Corning ~0.07
340 grease (~100 kN/m?)

Stainless/stainless with Qow Corning ~0.04
340 grease (~3500 kN/m-)

Silicon chip/aluminum with 0.02-mm 0.2-0.9
€poxy

Brass/brass with 15-um tin solder 0.025-0.14

Many applications involve contact between similar solids and wide range of possible

filler materials. Two class of materials that are well suited to enhance interfacial k are
soft metals and thermal greases. Silicon based thermal greases are attractive as they
have k fifty times that of air



Thermal conductivity — Porous media

**Porous media are combinations of stationary solid and fluid
*»If the fluid is either gas or liquid the resulting porous medium is said to be saturated
*¢In an unsaturated medium all the three phases coexist

Ex: Insulation systems, nanofluids, powder of bed with fluid in interstitial regions

—_— — %—'\N\I—O—/W\,—% —> 0 O
T T T T
R 2 G la-pE & 7 4 2
kA
kegA kA ) I

(@) (b) () keA



Thermal conductivity — Porous media

% For a saturated porous medium that is subjected to surface temperatures T, at x =0
and T, at x = L, the heat rate after steady state conduction is reached is:

koA |
= — ,-T
q.x L (1 2)

*¢ The above equation is valid if fluid motion and radiation heat transfer are negligible

% k. — effective thermal depends on following factors:- porosity or void fraction, &,
Keoiiqr Kauigr Siz€ distribution and packing arrangement of individual powder particles,
contact resistance at interfaces of particles, nanoscale phenomenon

|~— ——| l—1 - ) - L .
RO ST Mead  eiBianluidi Aread
I8 : / \/ = > T /
ks r, A IE)‘"
Gxf W
% ;
| e
—_— — AN —_— %—'\N\/—O—’\/\/\,—% — 0 O
T T 1 2 T T
£ 1 4 * % - el 4= .
kA
KeseA ka ! L

(a) (b) (c) s



Thermal conductivity — Porous media

s If the medium is modeled as a series composite consisting of fluid of length L and
solid of length (1 - €)L

AAT A
4 = 3 #qx Ker - T;)

(1—&)Llk, + eL/k;
% On equating left hand side and right hand side we get k. min = 1
| (1—&)lks + elk;

s If the medium is described by an equivalent parallel composite wall consisting fluid
region of width w and solid region of width (1 - €)w, the equivalent thermal

*

resistanceis: g o = ek, + (1- ek,
’&(1 é)L—»{ }~ B 'i
: Area A cenEss sy Aread
Ky ke / T —’k" . 1-aw /
. ! !
S 3 L TQ -q—’ * —— T2
lx xf W
I_’\ |—>X
— 0— AN/ — AAN—ANN— — 0 O
g T i T A (-l &L 3 % ﬁ 4
keffA kA ka L
keA

(a) (b) (c)



1D conduction in radial systems — Cylinder

s Cylindrical and spherical systems often experience temperature gradients in the radial
direction only and may therefore be treated as 1D
¢ Recall that the general form of heat equation for cylindrical coordinates in 3D is :
1o(, o I dif .oy @dlf..0F) - dT
——| r—=|+==|k—=|+—| k= |+ 4= pc,—
ror\ odr) r-do\ 0¢) dz\ 09z ot
¢ For steady state 1D case with no heat generation and storage the equation reduces to:

\ Tw,l' hl

Note that k is
considered variable
in 1D expression of

cylinder

5.2 1 |n(l'2/f1) 1
m2mrL 2 mkL h,2 L




1D conduction in radial systems — Cylinder

¢ The rate at which energy is conducted across cylindrical surface is expressed as:

I 1
b= RAL e
dr dr

. . . dr . .
¢ A = 2nrl is the area normal to direction of heat transfer. Since kra is independent of r,
the conduction heat transfer rate g, and (not heat flux g,”) is constant in radial direction

We determine temp distribution li dT =0
in cylinder by solving equation: r dr

Hot fluid
val. hl

Li(r) = Cl Inr + C2

To solve this equation boundary
conditions are:

I'n)=T,; and T(r) =T,

T | == T ] r 0,1 5,1 5,2
T(r) = ————In| — |+ T}, A
In(ry/ry) r T2 | nirry .

m2nnL 2 kL 2 mr,L




1D conduction in radial systems — Cylinder

Ts.l ==lig ) ( r

Inf — |+ T,
In(ri/r;) krz) d

T(r)=

* If the above temp distribution is now used with Fourier’s law:

2 Lk(T, | —
q, = ( 51 s.?.) R = 1[1(]’2/1'1)
In (rZ/r]) t.cond Lk
~Hot fluid
Loy

s 1 In(ry/ry) 1

m2mrlL 2 kL h,2 L



1D conduction in radial systems — Cylinder

q, —» — "N W— NN AN~ ANN—-ANN—0

1

I..

oo,

2renLhy 2wk, L 2rkpL 2nkcL  2mryLhy

i p——
4 .{rm'lvhlj/
/ A B [ C
| 1
| |
| |
| |
/!
T, l } e i —=T 2
' | In(r /r; In(rs/r In(ry/r
| i 1 N (r 1)+ n(rn '2)+ n(ry '3)+ 1
| |
|

} | et Eivm Lo
| T!4 qd, = = UA(TWJ —= Tw.4_)

|
|
|
|
|
T T. T /i
51 2 3 4 tot

5,

|
|
|
|
|
{
|
|
|
|
|
I
|
|
|
|
|
|

oo,

In(ry/ry) In(ra/ry)  In(ryfrs) 1

h2nrL

2n kAL 2r kBL 2n kcL ’1427["4[4



1D conduction in radial systems — Cylinder

T4

>

If U is defined in terms of the arbitrary inside area, A, =
2rr,l

Ditse

I

|
| U —
| —r, ' 1 n.n n.n nf.n nl
| | | ———ln— It
T, /i r, T Ty, T4 hl kA n kB ) kC 3 Iy h4
q, —» — "N W— NN AN~ ANN—-ANN—0
ey e w3 (Uydy = Uafy = UsAy = UsAy = (ZR)

h2nrL 27 kyL 2r kgl 21 kL ha2mr,L



1D conduction in radial systems — Sphere

For the differential control volume, energy conservation requires that q, = q,, 4,
For steady state, 1D conditions with no heat generation the Fourier law:
vdr

dT
= kAL = —k(4nr)=—
q, = ( ) >

A= 4mr? is the area normal to d

For radial systems, g, is consta 4k

R A I,s
Z—’J = = —J k(T) dT
T

nr f MY

Assuming constant thermal conductivity, k, the numerical expression for g, :
Ank(T;, — T, ,)
qr =
(1/n) = (1/ry)

L [le g
Thermal resistivity can then be expressed as: = R, = _( )



Summary of 1D steady state solutions to
heat equation with no generation

Plane Wall Cylindrical Wall” Spherical Wall”
1°T | d iT 1 d( ,dT )
Heat equation (— =30 —(—( r‘—) =0 - (—( r- ‘—J ="'}
dx- rdr\ dr rodr dr
Mnberatiare ; In(r/r,) | —(n/r
X 2
T.un.pcnfturc T AT Tk A T, —AT (n/r)
distribution L In(ri/r) 1 —(ri/n)
,. k AT G4
Heat flux (g”) k 20 _ - =
L rin(n/n) r-[(1/n) — (/)]
2Lk AT 4k AT
Heat rate (gq) kA £ % e
L In(r,/n) (/)= (1/ry)
Thermal L In(ry/n) (/)= (1/r5)

resistance (R, . nq) kA 2Lk 4k
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Critical thickness of insulation

+** Consider a smaller diameter tube, cable or the wire whose outside surface has
constant temperature and dissipates heat by convection to surroundings

s If the surface is covered with a layer of insulation it is desirable to evaluate
variation in heat loss from tube surface as the thickness of insulation increases

¢ As insulation is added, outer exposed surface temperature decreases due to
higher conduction resistance but the surface area available for convective heat
dissipation will increase

¢ There are two conflicting effects leading to optimum insulation thickness

T
h =5 Wm>K
Air

Insulation, &



Critical thickness of insulation -
Cylinder

s The inner temperature of insulation is fixed at
T, and the surface exposed to conduction
environmentis T_

** From thermal network, heat transfer is: T, I.,
o—AW—O0—AAA—0
].'[1 (} la.-'::ri} 1
g= 2nL (Ti — To) kL nr Lh
In(ro/ri) 1
+
k roh 1 1
—2mLl(Ti —T) | — ——
< . . . . . dq k.rﬂ hrg
+* To determine outer radius of insulation which o =0= - T
maximizes heat transfer: The maximization » ’ [ (r;fr‘} h]
oy . F,
condition is: ’
** The above maxima condition gives the result: k
J",,;_.: —
h

** If the outer radius is less than critical value,
heat transfer will increase by adding more
insulation.

% For outer radii greater than critical value

increase in insulation thickness will cause a

decrease in heat transfer



Critical thickness of insulation -
Sphere

The total thermal resistance for spherical wall of outer radius, r is:

1
hr?

o o

T, ~T; 1

R. = _L[{l_l_}]i+
th = Amkr r, = 4mr ‘h, T 4m T, r Tk,

For resistance R,, to be minimum and Q to be maximum:

thh=1[1 —2]:0

2k,
(fo)eritical fOF sphere = ==

0
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Transient Conduction

0

Basic heat equation: —

ox

a[,ar)
+ — —_—
dy\ dy

» Heat transfer problems are time dependent

conditions of a system are changed

(T
0z

Jr

_pCa_T
. P ot

» Unsteady, or transient, problems typically arise when the boundary

s Consider a hot metal billet that is removed from a furnace and exposed

to a cool airstream

s Energy is transferred by conduction, convection and radiation to the
surroundings until the temperature at each point in billet decreases and

reaches steady state

T\ « In 1D transient problems these

longer valid

\ temperature distributions are no
i 5,

P

I.1.

I |—> .

| 3

N

(a)

Lo

P

I‘\-’:,Z'hz



Transient Conduction

¢ Procedures for determining the time dependence of the temperature distribution
within a solid during a transient process depend upon assumptions made upon the
process

s If temperature gradients within the solid may be neglected, a comparatively
simple approach, termed the lumped capacitance method, may be used to
determine the variation of temperature with time

** Under conditions for which temperature gradients are not negligible, but heat
transfer within the solid is one-dimensional, exact solutions to the heat equation
may be used to compute the dependence of temperature on both location and
time

s Systems that display limited internal thermal resistance are of interest in this
module




Lumped Capacitance method

% Consider a hot metal forging that is initially at a uniform temperature T, and is
quenched by immersing it in a liquid of lower temperature T, < T,

¢ If the quenching is said to begin at time t = 0, the temperature of the solid will
decrease for time t > 0O, until it eventually reaches T, due to convection heat
transfer at solid — liquid interface

¢ Lumped capacitance method assumes that temperature of solid is spatially
uniform at any instant during transient process

¢ Absence of thermal gradients implies infinite thermal conductivity or negligible
internal resistance

¢ This approximation is feasible if conduction resistance is small compared to
convection resistance between solid and surroundings

E

out = Feonv




Lumped Capacitance method

* In neglecting temperature gradients within the solid, we can no longer
consider the problem from within the framework of the heat equation, since
the heat equation is a differential equation governing the spatial temperature
distribution within the solid

** The transient temperature response is determined by formulating an overall
energy balance on the entire solid. This balance must relate the rate of heat
loss at the surface to the rate of change of the internal energy




Lumped Capacitance method

Applying energy balance to control volume shown in figure:
_EULEI - Es:l

or —hA (T -T_) = pV L
dt

Introducing the temperature difference:

0=T-T. » (dB /dt) = (dT/dt) if T.. is constant
Jr_)‘r’r{'ﬁ N

hA, dt
Separating variables and integrating from the initial condition, for which t =0 and T(0) = T,

1l af
16
= —[ dt

pVe

ff:‘f-‘lj J 8, 0 <0

pVe. 6

A, O




Lumped Capacitance method

6 T-T. hA,
— = = exXp| — !
6. T —T. pVe
¢ Difference between the solid and fluid temperatures decays exponentially to
zero as t approaches infinity

% The quantity (pV./hA,) may be interpreted as a thermal time constant

B
o = [1"'?;45 ]{pVﬂ) = R,C,

% R, is the resistance to convection heat
transfer and C, is the lumped thermal
capacitance of the solid

% Any increase in R,or C, will cause the solid
to respond more slowly to changes in its
thermal environment




Lumped Capacitance method

To determine the total energy transfer Q occurring up to some time t:

0 = [ qdr = hA, [ 6dr

= 0

0 = {ch}e{l - exp[—i)]
TI

The quantity Q is related to the change in the internal energy of the solid
-0 = AEg

g

Applicability of lumped capacitance method.:

Consider steady-state conduction through the
plane wall of area A Ts)

One surface is maintained at a temperature T;, and
the other surface is exposed to a fluid of temperature
T..<T,,. The temperature of this surface will be some
intermediate value T ,, for which T < T, < T,




Validity of lumped Capacitance method

Applying the surface energy balance:

kA
— (T = T2) = hA(T,, ~ T.) o

Tsil B Ts,E (Lka] Rf,cond hL Bi
I, —T., (1/hA) R Ty

t.conv

¢ The quantity (hL/k) appearing in above equation is a
dimensionless parameter: Biot number, and plays a
fundamental role in conduction problems that
involve surface convection effects

4

L)

% Biot number provides a measure of the
temperature drop in the solid relative to the

temperature difference between the solid’s surface
and the fluid

4

)

L)

» eony

* |f Bi << 1, the resistance to conduction within the solid is much less than the

resistance to convection across the fluid boundary layer

4

)

* The assumption
reasonable if the Biot number is small

L)

of a uniform temperature distribution within the solid is



Transient temperature distribution for different Biot numbers

Consider the plane wall of figure below, which is initially at a uniform temperature T,
and experiences convection cooling when it is immersed in a fluid of T, < T,

For 1D problem, temperature variation with position and time T(x, t) is a strong
function of Biot number:

% Bi << 1 the temperature gradients in the solid are small and the
assumption of a uniform temperature distribution,T(x, t) = T(t) is
reasonable

s Bi >> 1, the temperature difference across the solid is much larger
than that between the surface and the fluid




Transient temperature distribution for different Biot numbers

BEZ&{O.I
k

If the above condition is satisfied the error associated with lumped capacitance is small

L. is called characteristic length and is the ratio of solid’s volume to surface area.
L. = L for plane wall of thickness 2L, and r /2 for cylinder, r /3 for sphere

L. also corresponds to the maximum spatial temperature difference

hA,t ht hli, k t hlL,. ot hA .t |
= = r=—"— mm)p ——=BiFo
pVe  pcL. k pc L k L pVe

6 T-T
— = — = exp(—Bi- Fo
0 - T T p( )

T, 0 =T~ T, 0) =T |




Generalized lumped Capacitance analysis

>

)

* In addition to convection from the adjoining fluid, radiation exchange can induce
transient thermal conditions

Transient conditions can be induced by applying heat flux at surfaces

Similarly initiation of thermal energy generation also lead to transient conditions

L)

/ O/
000 000

J/
0’0

Figure below depicts the general situation for which thermal conditions within a
solid may be influenced simultaneously by convection, radiation, an applied
surface heat flux, and internal energy generation

/7

*¢ The imposed heat flux g, and the convection radiation heat transfer occur at
mutually exclusive portions of the surface

** Though convection and radiation have been prescribed for the same surface, the
surfaces may, in fact, differ (A, . # A, )

Surroundings
TEL.’
poc, V, TO) = Tﬁj
: : qu
rad
| |
I |//
| |
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Generalized lumped Capacitance analysis

Applying conservation of energy at any instant t

r r r " 7 GIT
qsAsp + ER = (T G }"J‘.'.'n'.rn = ‘[ﬂ{E

or

q;:qsh + Eg - [h(T - Tm) + EO—(T4 - T:ur)]As(c r) T pvcd_
i ’ !
The above equation is a nonlinear, first-order, nonhomogeneous, ordinary differential
equation that cannot be integrated to obtain an exact solution

surroundings
T

Sar

p.c, V, TIO) =T,

qra-::l

\

5

e F

=1

q commr

[
]
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=
=y
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Generalized lumped Capacitance analysis

Case A: Radiation only:

Q;[JI +/é - [h(T/_ Tm) + EO—(T4 sur)]As{c ry — PVC%

p". C ﬂ = —fA O .'r T_L

“’,r 5 ..I' sur

Separating variables and integrating from the initial condition to any time t,

eA. .o (" ' dF
9 (e [
J[-)]"";'f' 0 JT. Tjur == T-L
Time required to reach temperature T is given by:
Ve +T + T
p - 1[1 sur | H sur I
48"4 D-Tsur sur - Tl sur o Tr

(L) (2]



Generalized lumped Capacitance analysis
Case B: Negligible radiation:

@A, + E, — [T - T.) + ec(P* = TL)A. ) = pVe—
I

In the above general equation all quantities except T are independent of t:
Let® =T-T_, where db /dt = dT/dt,

The equation reduces to the form : E +a@—b =0

dt
= [h‘;‘.ﬂi.["”) Ve) b.= [{q:’f"‘xh + Ef{ HU V{']

16’ .
Let A’ =0 — £ then : +aB’ =0

a dt
Separating variables and integrating from O to t
6’ T —T_— (bla)

- = exp(—at) or = exp(—ar)
0 L, — 1. — {bli)




Generalized lumped Capacitance analysis

Case C: Convection only with variable convection coefficient:

(}é‘g —i_\ix_ [h(T -1+ E{}-{}KT:M }]As{c,r) = pVC(Z_T

In free convection or boiling, the convection coefficient h varies with the temperature
difference between the object and the fluid. In such situations convection coefficient
can be approximated as:

B ==L

Then
dT

~C(T = T)" A, (T = T.) = =CA, (T — T)"*" = pVe—
dt
Substituting and d 9/dt = dT/dt into the preceding expression, separating variables and
integrating gives

9.

i

6 [nca, 6" i
S s AP
pVe



Problem 1:

Steel balls 12 mm in diameter are annealed by heating to 1150 K and then
slowly cooling to 400 K in an air environment for which T_ = 325 K and h = 20
W/m? K. Assuming the properties of the steel to be k = 40 W/mK, p = 7800
kg/m3, and c = 600 J/kg K, estimate the time required for the cooling process.

D=0.012m Steel, T=1150K
- k=40W/m-K
p=7800kg[m>
To=325K T T T c =600 Jfkg-K

h=20W/m2-K



solution:

| 2
Bi_ hL. h(n/ 3) _ 20 W/m K (0.002m ) 0001
k k 40 Wm-K

As Biot number is << 0.1, lumped capacitance method can be applied for transient
conduction analysis

D3/6
AL e ’O(}T )CP [~ Lo

T —
hAs  T-T,  hep?  T-Ty

o 78001(@-*“1113 (0.012m)600J/kg-K n 1150325
6% 20 W/m* - K 400—-325

t=1122s =0.312h



Problem 2:

Carbon steel (AlISI 1010) shafts of 0.1 m diameter are heat treated in a gas-fired furnace
whose gases are at 1200 K and provide a convection coefficient of 100 W/m? K. If the
shafts enter the furnace at 300 K, how long must they remain in the furnace to achieve a
centerline temperature of 800 K?

r BFT(r' - 0)=T; =300K

To=1200K
__,_._-x:v h—:aﬂwfmz K

T(o.H)=800K

p=7832kg/ m3, k=51.2 W/m.K, c=541J/Kg K, a=1.21x 10° m?/s



Solution:

First calculate Biot number to check applicability of lumped capacitance method:

Chr,/2 100 W/m® - K(0.05 m/2)
 k 512 W/m-K

Bi1 —=0.0488.

As Biot number is << 0.1, lumped capacitance method can be applied

T-T., [ hAs | 4h |
— = exp —‘ — |t [=exp| — t
T,-T, . pVc ) | pcD |
I 800—-1200 12_0.8“:_ 4x100 Wm~-K t

1 _ 2
(300—1200 ) 7832 kg/m” (541 Jkg-K)0.1 m

t=8359s.
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Physical mechanism of Convection

** Heat transfer through a liquid or gas, can be by

conduction or convection, depending on the
presence of any bulk fluid motion

Conduction in a fluid can be viewed as the
limiting case of convection, corresponding to
the case of quiescent fluid

Convection heat transfer is complicated by the
fact that it involves fluid motion as well as heat
conduction

Fluid motion enhances heat transfer, since it
brings hotter and cooler chunks of fluid into
contact, initiating higher rates of conduction at
a greater number of sites in a fluid

/Hu:-t plate, 110°C

j— — = s — - — s —
| - Heat transfer —
J-"-_H.\_‘_\_-_. -
Fluid through the

- T -"*u..Q-*‘ﬂmd —

\ Cold plate, 30°C

20°C
Sm's
—» AIR

— 0
" 50°C
T l / |

(a) Forced convection

Warmer air
r1sing

AIR Jo
\‘\ - / / +'-. 'L.\"-a, . /
> /‘l e v
|

(b) Free convection

_ No convection

currents
ATR

(¢) Conduction



Physical mechanism of Convection

» Hot iron block will cool faster if the fan is switched to ii;s;i ;.IEEW
a higher speed. Replacing air by water will enhance — —
the convection heat transfer even more - —

» Convection heat transfer depends on the fluid . 5
properties : dynamic viscosity u, thermal conductivity f
k,_density p, and specific heat C, as well as the fluid Ceond

2 Hot iron block

velocity 400°C

» Convection heat transfer also depends on geometry
and roughness of solid surfaces and whether the flow  The cooling of a hot block by

is laminar or turbulent forced convection

Convection is the most complex mechanism of heat transfer.

The rate of convection heat transfer is observed to be proportional to the
temperature difference and is conveniently expressed by Newton’s law of cooling

‘jcnmr - h(Ts - *If) (W"fml)



No slip and No temperature jump condition

» The fluid layer in direct contact with a solid

No-slip condition leads to velocity profile as shown

>

surface “sticks” to the surface and there is no
slip. In fluid flow, this phenomenon is known
as the no-slip condition, and it is due to the
viscosity of the fluid

For two bodies at different temperatures in
contact, heat transfer occurs until equilibrium
temperature at the point of contact. A fluid
and a solid surface having same temperature
at the point of contact is known as no-
temperature-jump condition

Uniform

approach

velocity, 1
—
—_—
—
E—

E—

Relative
veloeities
of fluid layers

Zero

velocity

at the
#~ surface

)

Solid block

Heat transfer from the solid surface to the fluid layer adjacent to the surface is by

pure conduction

dT

f-,i conv ‘?Eoud - _kﬂuid F . {1'!"'?-""111_.}'
Y ly=



Classification of flows

Viscous versus Inviscid flow Uniform velocities

appm_achn ) of fluid layers
> Internal resistance to flow is called the viscosity, velocity.V .
which is a measure of internal stickiness of the __, I
fluid. Viscosity is caused by cohesive forces — = velocity
between the molecules in liquids, and by the — jltu’f?;
molecular collisions in gases. In viscous flows the ==
effects of viscosity are significant while in Inviscid
flows viscous effects are negligible Solid block
Internal versus external flow External Wates
flow \
» The flow of an unbounded fluid over a surface \
such as a plate, a wire, or a pipe is external flow. \
The flow in a pipe or duct is internal flow if the
fluid is completely bounded by solid surfaces Air X
Internal

flow



Classification of flows

Compressible versus incompressible flow

» Mach number (Ma) calculation denotes whether a flow is compressible or
incompressible. In the expression below, V is flow velocity and a is speed of the
sound of a fluid V

Ma = —
a
V
For incompressible flow: » Ma=— <1

» Under small Mach number conditions, changes in fluid density are everywhere
small in the flow field. Incompressible flow requires only momentum and
continuity analysis

%
For compressible flow: » Ma = p >03

» If the density change is significant, it follows from the equation of state that the
temperature and pressure changes are also substantial. Large temperature
changes imply that the energy equation can no longer be neglected



Classification of flows

Laminar versus turbulent flow

» The highly ordered fluid motion characterized by smooth streamlines is called
laminar. The flow of high-viscosity fluids such as oils at low velocities is typically
laminar

» The highly disordered fluid motion that typically occurs at high velocities
characterized by velocity fluctuations is called turbulent. The flow of low-viscosity
fluids such as air at high velocities is typically turbulent

» The flow regime greatly influences the heat transfer rates and the required power
required for pumping the fluid

R pVL VL ‘ Reynolds number characterizes whether flow is
L\ — — .
m v laminar or turbulent
¥

—r Laminar boundary Transition |, Turbulent boundary
— layer region layer
- - U,

- T
— Hee N — | — ;) 1 Turbulent
T J ) )—-— N S layer
— . . T Q - o g N A ——] Buffer layer
— =0 = f;’ ' Laminar sublayer

* | Boundary-layer thickness. &
X |




Classification of flows

Natural versus Forced flow

> In natural flows,

effect, which ma
the fall of cooler

> In forced flow,

any fluid motion is due to a natural means such as the buoyancy
nifests itself as the rise of the warmer (and thus lighter) fluid and
(and thus denser) fluid

a fluid is forced to flow over a surface or in a pipe by external

means such as a pump or a fan

Light hot I

water nising

Cold
water

Hot
water
—
| ’:\\
|
water d
Cold
water 20°C
S5m's
Hot water — ATR
storage tank — Q
(above the top

of collectors) 50°C
— -

N
Dense cold I
water sinking
f—
Natural flow

Forced flow



Classification of flows

Steady versus Unsteady (Transient) flow:

» During steady flow, the fluid properties can change from point to point within a
device, but at any fixed point they remain constant. Many devices such as
turbines, compressors, boilers, condensers, and heat exchangers operate for long
periods of time under the same conditions, and they are classified as steady-flow
devices. In transient flow conditions the properties of a fluid at a fixed condition
vary with time

1D, 2D and 3D flows:

» A flow field is best characterized by the velocity distribution, and thus a flow is
said to be one, two-, or three-dimensional if the flow velocity varies in one,
two, or three primary dimensions, respectively

» A typical fluid flow involves a three-dimensional geometry and the velocity may
vary in all three dimensions rendering the flow three-dimensional [(x, y, z) in
rectangular or (r,0, z) in cylindrical coordinates
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Heat rate equation for convection — Newton’s law of cooling

Convection heat transfer mode comprise
of two mechanisms: random molecular
motion (diffusion) and bulk/macroscopic
motion of fluid

Convection is referred to cumulative
transport and advection refers to bulk
fluid motion alone

Fluid - surface interaction results in the
formation of hydrodynamic boundary
layer

In case of thermal gradient between
surface and flow temperature, thermal
boundary layer is developed

Boundary layer phenomenon governs an
important role in convective heat transfer
mode

In convection mode, sensible heat and
latent heat exchange are feasible
Convective heat transfer coefficient
depends upon boundary layer

|
¥ vy 9

Velocity
distribution
iyl
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Yy

Temperature
distnbution
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Necessity of dimensional analysis

Convection heat transfer depends on characteristics of fluid flow

Most practical fluid flow problems are too complex, both geometrically and
physically, to be solved analytically. Experimental testing or CFD analysis is resorted
to approximate the solution to analytical problems

The solution for such complex fluid problems is typically reported as experimental
or numerical data points and smoothed curves. Such data has more generality if
expressed in compact form and hence is the motivation for dimensional analysis

Dimensional analysis is a mainstay of fluid mechanics and is also widely used in all
engineering fields

Large parachute being tested at NASA facility forMARS mission



Introduction of dimensional analysis

Dimensional analysis is a method for reducing the number and complexity of
experimental variables that affect a given physical phenomenon through
compacting technique

If a fluid flow phenomenon depends on n dimensional variables, dimensional
analysis will reduce the problem to only k dimensionless variables, where the
reductionn - k=1, 2,3, or 4, depending on the problem complexity

Generally n = k equals number of basic or fundamental dimensions. In fluid
mechanics problems, four basic dimensions are Mass (M), Length (L), Time (T)
and temperature @

Suppose the force F on a particular body shape immersed in a stream of fluid
depended only on the body length L, stream velocity V, fluid density p , and fluid

viscosity u:
F=f(L.,V, p, u

If the geometry and flow conditions are complicated and the analytical solutions
are not feasible the function f(L, V,p ,u ) must be determined experimentally or

numerically
F (pVL)
2,2 &8
pV'L L

Cr = g(Re) Contd------




Introduction of dimensional analysis

s Some fluid forces have a very weak or negligible Reynolds number dependence in
wide region. The force coefficient in such cases may depend, in high-speed gas flow,
on the Mach number, Ma = V/a, where a is the speed of sound

% In free-surface flows, such as ship drag, C; may depend upon Froude number, Fr =
V2/(gL), where g is the acceleration of gravity

** In turbulent flow, force may depend upon the roughness ratio, €/L, where € is the
roughness height of the surface

*¢ The function g is different mathematically from the original function f, but it
contains all the same information. The experimental cost is minimized

s Dimensional analysis will often give a great deal of insight into the form of the
physical relationship of the variables of the problem

s Dimensional analysis provides scaling laws that can convert data from a cheap,
small model to design information for an expensive, large prototype

If Re,=Re, then Cgn= Cpp

Fp - p.i""( 1!{;} )2( Lp )3
Fﬂ,l'i' pf.i'.l l'l');rf.l'i' LH‘?




Principle of Dimensional Homogeneity

If an equation truly expresses a proper relationship between variables in a physical process,
it will be dimensionally homogeneous; that is, each of its additive terms will have the same
dimensions.

Consider the relation that expresses the displacement of a falling body

S=25,+ Vit + 38
Each term in this equation is a displacement, or length, and has dimensions {L}

Consider Bernoulli’s equation for incompressible flow:
p |

—+ —V? + gz = const
p 2 '
Each term, including the constant, has dimensions of velocity squared, or {L?>T?}

The motive behind dimensional analysis is that any dimensionally homogeneous
equation can be written in an entirely equivalent nondimensional form that is more

compact.



Variables and constants

Consider the following equations:
S=358,+ Vot +1gf
) I
p. 1
p 2
s* Dimensional variables are the quantities that actually vary during a given case and
would be plotted against each other to show the data. Ex: S, tand p, V, z

V© + gz = const

** Dimensional constants may vary from case to case but are held constant during a
given run. Ex: S, V,, g and p, g, C. They all have dimensions and conceivably could
be nondimensionalized, but they are normally used to help nondimensionalize the
variables in the problem

s Pure constants have no dimensions and never did. They arise from mathematical
manipulation. Angles and revolutions are dimensionless. Similarly counting
numbers are also dimensionless

Sdt = Sot + Vot® + 1gt’

¢ Integration and differentiation may change dimensions not homogeneity of Eq.



Choice of variables and scaling parameters in
dimensional analysis

¢ Consider the equation of displacement of falling body again:
8 = 8+ Vg2l
s The above equation can be divided into basic variables and parameters:
Here S and t are variables , S, V, and g are parameters

s To nondimensionalize the displacement equation of falling body , first it needs to
be checked how many dimensions are there in variables and parameters:

(S} =1{So} ={L} (1} ={T} (Vo) ={LT '}  {g} ={LT 7
*»* Therefore select two parameters to be scaling parameters or repeating variables

For the falling-body problem, selection of any two of the three parameters to be
scaling parameters leads to following three options



Choice of variables and scaling parameters in
dimensional analysis

Option 1: Scaling parameters S, and V;: the effect of gravity g

Let S* and t* be dimensionless parameters:

5":5: — i Ir:i: — E
S{} SEJ
Then free falling problem equation can be written as:
L . & S,
S¥ =1+ %+ —att? q =52
2 Vo

There is a single dimensionless parameter a, which
shows here the effect of gravity

Gravity increases the parabolic rate of fall for t* > 0, but
not the initial slope at t*= 0.




Choice of variables and scaling parameters in
dimensional analysis

Option 2: Scaling parameters V, and g: the effect of initial displacement S,,.

Sg )
— ;{"2 }f—:.i: . J— r%
V 0 1’ 0

pies2 - 250
Vo

S‘ A o

. » |
5:;::;: = « _|_ I,«:;.-:;: _|_ _.}

The same single parameter o again appears and
here shows the effect of initial displacement,
which merely moves the curves upward without

nq|”

changing their shape &

6—

=

%
bty 4 —

Vo



Choice of variables and scaling parameters in
dimensional analysis

Option 3: Scaling parameters S, and g: the effect of initial speed V,

The dimensionless parameters defined here are:

S i 1/2
S‘??:-:'!:!: i S I-:-::‘:E:*_-\:.c = r(i)
Sn ,S[ )

| >
‘S‘:E:LE;:E: . I _l_ Br:f: 3 S - ?I:E::E:Li:a— B — ——

in all three options, the same
parameter o appears but has a
different meaning:
dimensionless gravity, initial
displacement, and initial
velocity

Note the number of dimensions
have been reduced from 5 to 2

- 2 Sﬂ 0 | |

72
0

S = fen(t'. @) a

rek = 1g/S,



Guidelines on selection of scaling variables

The following are some guidelines for selecting scaling variables:

» They must not form a dimensionless group among themselves, but adding one
more variable will form a dimensionless quantity. For example:

p“VPLE = (ML H*LIT)" (L) = M°L°T° onlyif a=0.b=0.c=0

» Do not select output variables for your scaling parameters

» If convenient, select popular, not obscure, scaling variables because they
will appear in all dimensionless groups. For example select density, not
surface tension, select body length, not surface roughness, select stream
velocity, not speed of sound

The foundation of the dimensional analysis method rests on two assumptions:
(1) The proposed physical relation is dimensionally homogeneous, and (2) all the
relevant variables have been included in the proposed relation




Buckingham Pi theorem

It was introduced by Buckingham in 1914

s The name pi comes from the mathematical notation , meaning a product of
variables. The dimensionless groups found from the theorem are product groups
denoted by rt,, it,, 1Ty, ---.

*» The method allows the pi groups to be found in sequential order without resorting
to free exponents

The first part of the pi theorem explains what reduction in variables to expect:

If a physical process satisfies the PDH and involves n dimensional variables,
it can be reduced to a relation between only k dimensionless variables or

1t’s. The reduction j = n-kequals the maximum number of variables that
do not form a pi among themselves and is always less than or equal to the
number of dimensions describing the variables.



Buckingham Pi theorem

The second part of the theorem shows how to find the pi groups one at a time:

Find the reduction j, then select j scaling variables that do not form a pi among
themselves. Each desired pi group will be a power product of these j variables
plus one additional variable, which is assigned any convenient nonzero
exponent. Each pi group thus found is independent

» Suppose a process involves five variables:

v, = flvs, Vs, vy, Us)
» Suppose there are three dimensions {MLT} and hencej= 3. Thenk =5 -3=2
» Pick out three convenient variables that do not form a pi, and suppose these

turn out to be v,, v, and v, Then the two pi groups are formed by power
products of these three plus one additional variable, either v, or v

]._I] — {Uj }“.{U_;Jh{ U_L}ilU| — J'F':':'IGL“TD 1__[2 — {Uj }”nf;}h{ U_}}(IU_:, — J'P':’:"DL{}TD
» Equating exponents of the various dimensions is guaranteed by the theorem to

give unique values of a, b, and c for each pi. And they are independent
because only 1, contains v, and only 1T, contains v



Summary of steps involved in finding it products

s List and count the n variables involved in the problem. If any important
variables are missing, dimensional analysis will fail

¢ List the dimensions of each variable according to {MLTO} or {FLTO}.

¢ Find j. Initially guess j equal to the number of different dimensions present, and
look for j variables that do not form a pi product. If no luck, reduce j by 1 and
look again. With practice, you will find j rapidly

s Select j scaling parameters that do not form a pi product. Make sure they have
some generality if possible

¢ Add one additional variable to your j repeating variables, and form a power
product. Algebraically find the exponents that make the product dimensionless.

Try to arrange for your output or dependent variables. Do this sequentially
adding one new variable at a time, find all n—j = k pi products

s Write the final dimensionless function, and check the terms to make sure all pi
groups are dimensionless



Dimensions of Fluid Mechanics problems

Dimensions

(Quantity Symbol MLT® FLTO
Length ¥ L L
Area A B &
Volume v i
Velocity Vv ' LT !
Acceleration dVidt 5 7
Speed of sound a L= ¥ e
Volume flow 0 B o
Mass flow m ! FTL™'
Pressure, stress p.o, T ML'T™ FL™?
Strain rate é F T
Angle f None None
Angular velocity w, 0 ; il
Viscosity m L P e FTL
Kinematic viscosity v o i pEr
Surface tension X MT > FL™!
Force F MLT* F
Moment, torque M ML*T? FL
Power P ML’T™ FLT'
Work, energy W, E ML*T 2 FL
Density p ML FTL*
Temperature T G} G
Specific heat o LT L’T?0™!
Specific weight ¥ ML>T™? ]
Thermal conductivity k MLTO ™! FT'eo™!
Thermal expansion coefficient B o e




Dimensional analysis - an example

» Suppose the force F on a particular body shape immersed in a stream of fluid
depended only on the body length L, stream velocity V, fluid density p , and fluid

viscosity |: E=f(; V. p.t)

F [pVL
» The final numerical relation between variables is given by : ppﬂ 72 8 (_)

Write the function and count variables:

Step 1
F=f(L, U, p, w) there are five variables (n = J)
A U I R Y’
Step 2 - | | 4 | 3 | 1
IMLT -} (L} (LT '} {ML )} ML T ')



Dimensional analysis - an example

Find j. No variable contains the dimension ®, and so j is less than or equal to 3 (MLT).
We inspect the list and see that L, U, and p cannot form a pi group because only p con-
tains mass and only U contains time. Therefore j does equal 3, andn —j=5—3 =2 = k.
The pi theorem guarantees for this problem that there will be exactly two independent
dimensionless groups.

Step 3

Step4  Select repeating j variables. The group L, U, p we found in step 3

Combine L, U, p with one additional variable, in sequence, to find the two pi products.

First add force to find II;. You may select any exponent on this additional term as you
please, to place it in the numerator or denominator to any power. Since F is the output, or
dependent, variable, we select it to appear to the first power in the numerator:

1, = L°U°p°F = (LYLT~H?(ML™)( MLT %) = M°L°T"

Step 5

Length: a+b—-3c+1=0
Mass: c+1=90
Time: —b —2=10

Solving algebraically: a= —2 b= -2 c =—1



Dimensional analysis - an example

F

I, = L 2U 2" 'F =
1 P pUQLZ

=CF

Finally, add viscosity to L, U, and to find TT,. Select any power you like for viscosity.
By hindsight and custom, we select the power -1 to place it in the denominator

1—_[2 — LGUE? c, —1 LG(LT—l)b(ML—S)C(ML—lT—I)—I — M{JLGTD
Length: a+b—3c+1=0
Mass: c—1=0
Time: —b +1=0
Solving algebraically: a=b=c=1
M, =L'Up'u! _PUL ke
I
Step 6 F (pUL)
e = o| ——
P pUZLE g w



Dimensional analysis - Second example

The power input P to a centrifugal pump is a function of the volume flow Q, impeller
diameter D, rotational rate Q, and the density p, and viscosity of the fluid u

P = f(O. D, (, p. n Hint: Consider Q, p, and D as repeating variables
Solution:
Step 1: Count the variables. There are six (don’t forget the one on the left, P)

P e | b e | r | o~
Lty | ety | oy |y | ety | ey

Step 2:

(€1, p. D) as repeating variables
Step 3: Check that these three do not form a pi group
Q"D = (T HUFT’L™HL) = F°L°T®  onlyif a=0,b=0,¢c=0



Dimensional analysis - Second example
Step 4a: Combine ({1, p, D) with power P to find the first pi group:
II, = Q%"DP = (T HYNFT*L™*"(L)°(FLT" ") = F°L°T®

By equating exponents:

Force: b +1=0

Length: —4b +c +1 =0

Time: —a + 2b -1 =0
Solving algebraically: a=—3 b= —1,and ¢c = =5

This first pi group, the output dimensionless variable, is called the power coefficient of
apump, C
’ P

I, = 07 D7P = o

= Cp



Dimensional analysis - Second example

Step 4b: Combine ({). p. D) with flow rate Q to find the second pi group:
H2 — QGPBDCQ — {T—I)J(FTEL—-ﬁl)E}(L)C(L:}T—1) — FDLDTU

Solving algebraically: a = —1,b = 0,and ¢ = —3.
The second pi group is called flow coefficient of the pump, C,
=103 _ O .

Step4c: Combine ({1, p, D) with viscosity w to find the third and last pi group:
I, = Q%"Dw = (T"HUFT*L™H(L)Y(FTL™?) = F°L°T"
Solving algebraically: @ = —1.b = —1,and ¢ = —2; or I1; = LU'(PQDE)

The original relation between six variables is reduced to three dimensionless groups:

P f.( 0 u )
p’D>  T\QD’" pQD?



Step by step method of Ipsen for estimating non
dimensional quantities
Pi theorem has some inherent drawbacks:

» All TU groups contain the same repeating variables and might lack effectiveness

» Involves laborious checking of repeating variables that donot form TT groups
Ipsen suggests an alternative method to obtain TT groups without any checking:
Consider the same classical drag function of body submerged in a fluid:
F = fen(L, V, P, L)
(MLT ) (Ly {LT™Y% (ML} {ML'TY

There are three dimensions, {MLT}. Eliminate them successively by division or
multiplication by a variable. Start with mass {M}. Pick a variable that contains
mass and divide it into all the other variables with mass dimensions

% —fc:n(L. V, o %)
(LT (L} (LT (ML} (LT



Step by step method of Ipsen for estimating non
dimensional quantities
s Discard p, and now there are only four variables. Next, eliminate time {T}
Fﬁ = fcn(L. bl i)
pV
(L) (L} {LT™Y (L)

Now we see that V is no longer relevant since only V contains time {T}. Finally,
eliminate {L} through division by, say, appropriate powers of L itself

F e .3
pVE’L-z = TLH(/E.' pVL)
{1} Ly {1}
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Heat Equation- convection

»Previously in developing heat rate equation for conduction we applied
conservation of energy for a differential control volume. For a prescribed
geometry and boundary conditions the equations must be solved to determine
the temperature distribution

»In case of moving fluid the effects of fluid motion on energy transfer across the
surfaces of control volume must be considered along with those of conduction

» For convective heat transfer the solution of differential equation that provides
temperature distribution requires knowledge of velocity field

»Here we consider flow of viscous fluid in which there is concurrent heat and
mass transfer and by using Newtons laws of motion and conservation of mass and
energy to predict velocity, temperature and mass concentration fields in a fluid

e

— S

Fi e
f H\.
—_—ee e
E, : E.E, \
% Ry g E.
w
L T ;_: out
Hhﬁh-ﬂ#f
(B)

Conservation of energy for a) closed system over a time interval b) for control volume at an instant



Conservation of mass equation

»Here we restrict our attention to steady two-dimensional flow in x and y
directions of a Cartesian coordinate system. Unit depth is assumed in z direction
therefore the differential control volume of the element is (dx. dy. 1)

» The conservation of mass principle is simply a statement that mass cannot be
created or destroyed, and all the mass must be accounted for during an

analysis

» In steady flow, the amount of mass within the control volume remains
constant, and thus the conservation of mass can be expressed as:

dv

.- ) . . ._ v+—ady
|' | Rﬂn-; of 1119.155 I:ln:}w ] _ |' Rate ot 1113.?;5 ﬂ_::}w ] Jy '
\1nto the control volume,/ \out of the control volume r——=F=-=—

| |
Noting that mass flow rate is equal to the I |
product of density, mean velocity, and _...' | I
cross-sectional area normal to flow, the I a”
rate at which fluid enters the control : : E)—T dx
volume from the left surface is pu(dy . 1) b e e e e o ‘

X,V dx



Conservation of mass equation

» The rate at which the fluid leaves the control volume from the right surface
can be expressed as:

p(u + %dr) (dy - 1)

» The rate at which fluid enters and leaves control volume in y direction is:

,~)(dx 1)

» On application of law of conservation of mass:

pv(dx. 1) and p(y + ih’

pu(dy - 1) + pv(dx - 1) = p(n + @ dx )( y-1) + p(v 3: P-*)(d:r- 1)

Simplifying and dividing by dx . dy . 1 gives P»'+?d1f
1'.
: r-——F—-——-i
ol n i —0 | o
ax  Jy A I
. . . . I
This is the conservation of mass relation, also known as ' : .\ Jut p
. o . T —ax
the continuity equation, or mass balance for steady two | 0x

|
|
dimensional flow of a fluid with constant density x;,_ T T_d: -
v



Conservation of momentum equation

+* The differential forms of the equations of motion in the velocity boundary layer are
obtained by applying Newton’s second law of motion to a differential control volume
element in the boundary layer

¢ According to Newton’s second law of motion, the net force acting on the control
volume is equal to the mass times the acceleration of the fluid element within the

control volume, which is also equal to the net rate of momentum outflow from the

control volume

** The forces acting on the control volume are body forces that act through the entire
body of control volume and are proportional volume of the body. While surface
forces act on a control surface and are proportional to surface area

(Mass)[. o | =
\in a specified direction/ |

Transition
region

:

Acceleration

Laminar boundary

layer

3\:-3‘)

(Net force (body and surrm:e‘s‘] » dm - a, = F,

surface, x | g body, x

acting in that direction

T,
Turbulent bound: U
urbulent boundary -
layer
U
m—
o
— N ,ﬁ) - )/‘) Turbulent
layer
) AN N
e N A ] Buffer layer

Laminar sublayer

Boundary-layer thickness, 8

Contd---



Conservation of momentum equation

s Mass of the fluid element within the control volume is:

om = p(dx - dy - 1)

s Since flow is two dimensional and u = u (x, y), total differential of u is :

du
ox
s Acceleration of fluid in x direction is :

a1l
dit = de + = dy
rJI_T :

_du  Odudx  Oudy du

a, = = + = U— TtV _—

dt  oxdt Oy dt 0x

The forces acting on a surface are due to pressure and
viscous effects. In two-dimensional flow, the viscous stress

at any point on an imaginary surface within the fluid can
be resolved into two perpendicular components: one
normal to the surface called normal stress (which should
not be confused with pressure) and another along the P
surface called shear stress

T+ i dy
— ¥
F======= |
|
Differential : @
ifferentia
: control I_,,._
: volume : P E i
| | ox
e = |
-—
X, ¥ T dx

Contd---



Conservation of momentum equation

» Neglecting the normal stresses for simplicity, the surface forces acting on the
control volume in the x-direction will be as shown in Fig. below:

or oP ‘9t oP
F_o..=|= dr)d:r*l —(—ah)ch ( )c‘h
surface. X (}J. v ( ) j ( ) .. D;J. ['Jh; ( )
[ 0*u rJP ;
- Mr’h" o (‘3 X - 1) By substituting T = |.l—
[ Acceleration \ (Net force (body and surface)!
(Mass)| J= |
\1n a specified direction acting in that direction
. , ot
( du (J'H) _9'u 9P oW
P! ox ay M - 0x === I
g I I
This is the relation for the conservation of p : Differential : b
momentum in the x-direction, and is known as the x- > fgﬂgi | P
momentum equation. If there is a body force acting : : P+?dx
in the x-direction, it can be added to the right side of rl.r —— e ;x- !
T

the equation provided that it is expressed per unit
volume of the fluid



Conservation of Energy equation

** The energy balance for any system undergoing

. Eheat. out. ¥ Emass. out. v
any process Is EXDFESSEd as:

Eill o EDII_'LT : AES}-"BTE‘III
* For a steady flow process the general energy r=4-=-L—-— av
equation reduces to:
a ) ) Eheat in, x : : Eheat out, x
Eﬁl_EDm:O .| I >

—l —

+** Since energy can be transferred by heat, Emass in, x :
work, and mass only, the energy balance I
for a steady-flow control volume can be dx
written explicitly as:

Emass out, y

r —
I

Eheat m, y Emass in, y

(Ein — Eom)b}-‘ heat T (Ein — Eom)b}-‘ work T (Ein — Eour)b}-’ mass = O

The total energy of a flowing fluid stream per unit mass is e,.,, =h +ke +pe where h
is the enthalpy (which is the sum of internal energy and flow energy),pe = gz is the
potential energy. Compared to enthalpy K.E and P.E is small and neglected

Contd---



Conservation of Energy equation

Eheat. out. y Emass. out. y

Energy is a scalar quantity, and thus energy interactions in
all directions can be combined in one equation

av
r- I
» Mass flow rate of the fluid entering the control volume Eneatinx : Ehest out,x
from the left is pu(dy . 1) I T
. | | ’ ,
» Rate of energy transfer to the control volume by mass Fmassinx | Emassout.
[ — -— e wl
in the x-direction is: TdY

. d ( Jr?:;"e~'_at1'-;em11.):-; Fneatiny = Emassiny
(Em o Eout)b}-’ mass,x ( ”?esneml) {( ”?{’me 1111) + % dx '

dlpu(dy - 1)C,T] :
= — e F —dx = —pC ( :‘i—T‘F T )duﬁ

Repeating the above exercise in y-direction and adding both x an y terms :

(Em —Em“)b},mss = —pC, (”g_r + Tg”)dx dy — pC (vg—TJr T )aH. dy

= ﬂpC(fg—T+ v i)dxdv

Contd---



Conservation of Energy equation

The net rate of heat conduction to the volume element in the x-direction is:

. + . . 00,
., — our)b}’ leghop ™ (Qi ;i ox d‘l)
— —ri ( —k(dy - 1) ﬂ—) dx =k E}-T dx dy
0x " Jx ax ]

Repeating this for the y-direction and adding the results, the net rate of
energy transfer to the control volume by heat conduction becomes:
02T 92T 0°T | 9°T"

(Ein o Eout)bvlwat - ]‘: - }d.?\”ﬂﬁ-’ + ]f . ﬁ.dxﬂh‘ - k( V-2 T o2 )d.l‘gﬁ:
! ox- dy~ ax=  dy°,

Ignore the work done by body forces and viscous forces. The work done by

pressure force is flow work which is already included in energy transferred
by mass stream the 2D energy equation is given by:

L[ aT )T 0*T | o*T

pC, sff+1'r, ‘):];('_ -+ = )

. oA ay ax- dy

The net enerqgy convected by the fluid out of the control volume is equal to the net
enerqy transferred into the control volume by heat conduction




Conservation of Energy equation

When the viscous shear stresses are not negligible, their effect is accounted for
by expressing the energy equation as:

(9T 0T
- - _I_ -
PGl 1 Gy VG

:ff(d-]; (JT)+}-L¢)

L Ox- oy~

Viscous dissipation function ¢ play a dominant role in high-speed flows,
especially when the viscosity of the fluid is high (like the flow of oil in journal
bearings). This manifests itself as a significant rise in fluid temperature due to
the conversion of the kinetic energy of the fluid to thermal energy.

Viscous dissipation is also significant for high-speed flights of aircraft

For the special case of a stationary fluid , u = v = 0, energy equation reduces
to a 2D heat conduction equation

0*T N 0*T

- g - 7 — {'-}
ox- oy~
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Velocity boundary layer

s When fluid particles make contact with the surface, their velocity is reduced
significantly relative to the fluid velocity upstream of the plate, and for most
situations it is valid to assume that the particle velocity is zero at the wall

+** Fluid particles act to retard the motion of particles in the adjoining fluid layer,
which act to retard the motion of particles in the next layer and so on until aty =
6 from the surface the effects become negligible

+* The quantity & is termed the boundary layer thickness, and it is typically defined
as the value of y for which u = 0.99u... The boundary layer velocity profile refers to
the manner in which u varies with y through the boundary layer.

** With increasing distance from the leading edge, the effects of viscosity penetrate
farther into the free stream and the boundary layer grows (6 increases with x)

Ts

C, = ou
f 2 T = —_—
pu.l/2 $ Jy .
u_ '
Free stream 5 ()
H__ _
. i Velocity
A 5 T boundary
L - | 7 ;—— layer
-
AN

Velocity boundary layer development on a flat plate



Thermal boundary layer

Consider a flow over an isothermal plate. A thermal boundary layer develops if
the fluid free stream and surface temperature differ. At leading edge the

temperature profile is uniform

Fluid particles in contact with plate achieve thermal equilibrium at the plate’s
surface temperature. Temperature gradients develop within the fluid layers due

to exchange of energy with adjoining layers

The region of the fluid in which these temperature gradients exist is the thermal
boundary layer, and its thickness 6. is typically defined as the value of y for

which theratiois: (7, — TH/(T,—T_)] =0.99

The relation between conditions in this boundary layer and the convection heat
transfer coefficient can be demonstrated from the relations below:

” aT i R
g, = _k_f_ g = ﬁ(r;- = Tm) - h = 4 }l-v:ﬂ
dy y=0 et
i
- T Free stream 8,(x)
TCH:
__ Thermal
, 2 T boundary
L 5|! layer

e 1,

Thermal boundary layer development on an isothermal flat plate



Significance of boundary layers

» For flow over any surface, there will always exist a velocity boundary layer and
hence surface friction. The velocity boundary layer is of extent 6 (x) and is
characterized by the presence of velocity gradients and shear stresses

» A thermal boundary layer, and hence convection heat transfer, will always exist if
the surface and free stream temperatures differ. The thermal boundary layer is of
extent &, (x) and is characterized by temperature gradients and heat transfer

*¢ The principal manifestations of velocity and thermal boundary layers are surface
friction and convection heat transfer.

% The key boundary layer parameters are friction coefficient, C; and convective heat
transfer coefficient, h

U Free stream

Free stream
&lx) T
i

> _ — Thermal
y > - Velocity y o boundary

> b __.T boundary ] 8, layer
L > o/ ——  layer L |




Laminar and turbulent velocity boundary layers

» Boundary layer development on a flat plate is illustrated in Fig. below In many
cases, laminar and turbulent flow conditions both occur, with the laminar section

preceding the turbulent section

» In the laminar boundary layer, the fluid flow is highly ordered and it is possible to
identify streamlines along which fluid particles move. The boundary layer
thickness grows and that velocity gradients at y = 0 decrease in the increasing x

direction

» Local surface shear stress 1, also decreases with increasing x. The highly ordered
behavior continues until a transition zone is reached, across which a conversion

from laminar to turbulent conditions occurs

Streamline

| Turbulent
region

} Buffer layer

Viscous
sublayer

+———— | aminar -t ah Turbulent
Transition



Laminar and turbulent velocity boundary layers

» Conditions within the transition zone change with time, with the flow sometimes
exhibiting laminar behavior and sometimes exhibiting the characteristics of
turbulent flow

» Flow in the fully turbulent boundary layer is, in general, highly irregular and is
characterized by random, three-dimensional motion. Mixing within the boundary
layer carries high-speed fluid toward the solid surface and transfers slower-moving
fluid farther into the free stream

» Much of the mixing is promoted by stream wise vortices called streaks that are
generated intermittently near the flat plate, where they rapidly grow and decay

Streamline

Turbulent
region

} Buffer layer

Viscous
sublayer

+———— | aminar -t ah Turbulent
Transition



Laminar and turbulent velocity boundary layers

» As a result of the interactions that lead to chaotic flow conditions, velocity and
pressure fluctuations occur at any point within the turbulent boundary layer

» Three different regions may be delineated within the turbulent boundary layer as
a function of distance from the surface

» In viscous sub-layer transport is dominated by diffusion and the velocity profile is
nearly linear

» In buffer layer diffusion and turbulent mixing are comparable, and there is a
turbulent zone in which transport is dominated by turbulent mixing

Streamline

| Turbulent
region

} Buffer layer

Viscous
sublayer

+———— | aminar -t ah Turbulent
Transition



Laminar and turbulent velocity boundary layers

» Fig. below shows that the turbulent velocity profile is relatively flat due to the
mixing that occurs within the buffer layer and turbulent region, giving rise to large
velocity gradients within the viscous sub layer

» T, is generally larger in the turbulent portion of the boundary layer of Fig. than in
the laminar portion.

» The transition from laminar to turbulent flow is ultimately due to triggering
mechanisms, such as the interaction of unsteady flow structures that develop
naturally within the fluid or small disturbances that exist within many typical

boundary layers
» The onset of turbulence depends on whether the triggering mechanisms are

amplified or attenuated in the direction of fluid flow, which in turn depends on a
dimensionless grouping of parameters called the Reynolds number, Re,

du < di
dy|y=0,lam  dy|y=0, turb
'S uo_ . MM .
> - u,_ X
: . Re, = P
uly) —— aly) — - u
> Jil
ou ay|y=0
ay|y=0 ]

Laminar Turbulent



Laminar and turbulent thermal boundary layers

Since the velocity distribution determines the advective component of thermal
energy transfer within the boundary layer, the nature of the flow also has a
profound effect on convective heat transfer rates

For laminar conditions, the thermal boundary layer grow in the stream wise
(increasing x) direction. Hence the temperature gradient in the fluid decreases at 'y
= 0 in the streamwise direction

Turbulent mixing promotes large temperature gradients adjacent to the solid
surface and corresponding increase in heat transfer coefficient across the

transition region
Differences in thickness of velocity and thermal boundary layer tend to be smaller

in turbulent flow o

I
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I
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/ﬁ;)'
u,, T ’
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. / |_ ;
.I{.—I*
I
<— Laminar —=+—- Turbulent

Transition

Variation of velocity boundary layer thickness 6 and the local heat
transfer coefficient h for flow over an isothermal flat plate
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The Boundary layer equations

» The relevance of boundary layer to convection transport is depicted by
considering the equations that govern boundary layer conditions

» The boundary layer equations will be used extensively to determine important
dimensionless parameters associated with convection heat transfer

» Motion of a fluid in which there are coexisting velocity, temperature gradients
must comply with several fundamental laws of nature. In particular, at each point
in the fluid, conservation of mass, energy, as well as Newton’s second law of

motion, must be satisfied

» Equations representing these requirements are derived by applying the laws to a
stationary differential control volume for the steady, two-dimensional flow of an
incompressible fluid with constant properties

Thermal Concentration Velocity
boundary boundary boundary
layer layer layer

Development of the velocity, thermal, and concentration boundary layers for an arbitrary surface



Assumptions involved in boundary layer equations

» Body forces are negligible, there is no thermal energy generation in the fluid and
the flow is non-reacting

» Boundary layer thicknesses are typically very small relative to the size of the
object upon which they form, and the x-direction velocity, temperature gradients
normal to object surface are very small

- ] - - b | - Bl {-{i
dx~ dy” dx- ady”

9 u 9 u T *T
& —

» By neglecting the x-direction terms, the net shear stress, conduction heat flux,
in the x-direction are negligible. Since the boundary layers are so thin, the x-
direction pressure gradient within a boundary layer can be approximated as the

free stream pressure gradient 9P _dp.,
dx  dx

Thermal Concentration Velocity
boundary boundary boundary
layer layer layer

Development of the velocity, thermal, and concentration boundary layers for an arbitrary surface



Assumptions involved in boundary layer equations

» The form of p_,(x) depends on the surface geometry and may be obtained from
a separate consideration of flow conditions in the free stream where shear
stresses are negligible. Hence pressure gradient is treated as known quantity

du n v -0 -- 2D continuity equation
dx dy

u3u+uau__1dpm+vazu -
dx Jy 0 dx 3y’ -- 2D momentum equation

U— +0— = —
Ay

o — + —
dx dy Jdy- ¢

T T T v(ou) _
-- 2D energy equation

» Analytical solutions of boundary layers involve complicated mathematics and

detailed solutions can be obtained by finite difference or finite element
techniques

» Wide array of situations of engineering relevance involve turbulent convective

heat transfer which is mathematically and physically more complex than
laminar convection



Boundary layer similarity: The normalized boundary

layer equations

du ou 1 dp., d’u
U— + V— = —— +V—
dx  dy p dx dy-

of of T v [au T
U—+V— =0 —+—| —
dx dy dy- ¢, \dy

» The above equations are characterized by advection terms left hand side and
diffusion terms on right hand side

» The above situation is described by low speed forced convection flows which
are found in many engineering applications

» Implications of similarity may be developed in a rational manner by first non
dimesionalizing the governing equations



Boundary layer similarity parameters

» The boundary layer equations are normalized by first defining dimensionless

independent variables of the forms:
X

XF = — and ¥

ﬁ.I
L
where L is a characteristic length for the surface of interest

» Dependent dimensionless variables may be defined as:
i

v . T —T.
— and UE = 1_ T = :

r.::: = —_—

where Vis the velocity upstream of the surface

» Dimensionless form of conservation equations can be developed using
dimensionless variables and as a consequence two important dimensionless
similarity parameters evolve: Reynolds number and Prandtl number

» Similarity parameters allow to extrapolate results of a surface experiencing a
set of convective conditions to geometrically similar surfaces subjected to
entirely different conditions

» As long as similarity parameters and dimensionless boundary conditions are
same for two sets of conditions, the solution of differential equations for
velocity and temperature will be identical



The boundary layer equations and their y-direction boundary conditions in
nondimensional form

Boundary Boundary Conditions Similarity
Layer Conservation Equation ] ] Parameter(s)
Wall Free Stream
ou* du*  dp* 1 ot u,, (x%) VL
Velocity w*— + v* == + Hax* ) =0 wH(x*,e0) = — -
] dx* dy* dxt  Re; dy* . 0) (%) v Rer v

" E 2w
Thermal u*ai + p* Jar 1 _oJT

dx* dy* - Re, Pr oy*

THx*, 0) =0 TH(x* o0) = 1 Re,.Pr = —
[

» The momentum equation suggests that though conditions in velocity boundary
layer depends upon fluid properties p, u, velocity, V and length scale L, this
dependence may be simplified by grouping variables in the form of Reynolds
number

» The functional form of solution of the differential equation is given by:
u* = }“ x*, y* Rey,—
\ dx*

dp* )

» Since the pressure distribution p*(x*) depends on the surface geometry and may
be obtained independently by considering flow conditions in the free stream,
the appearance of dp*/dx* momentum equation represents the influence of
geometry on the velocity distribution



Non dimensional correlation of momentum equation

The shear stress at the surface, y* = 0, may be expressed as:

ot
T, = U—
dy

( 1V ou*

:.—P_

L )y

y=i

y¥=()
Based on the above relation, friction coefficient can be expressed as:

T, 2 du*
V22 Re, dy*

y*=0
Since we know that :

ou*

dy*

y*=0

For a prescribed geometry:
2
C, = —f(x* Re
= Rl f L)

Friction coefficient, a dimensionless parameter of considerable importance to the
engineer, may be expressed exclusively in terms of a dimensionless space
coordinate and the Reynolds number



Non dimensional correlations of energy equation

» Intuitively, we expect that convective heat transfer coefficient, h depends on
the fluid properties (k, c,, 4, and p), the fluid velocity V, the length scale L,
and the surface geometry

JT* oT* 1 9°T*
+UF— = —
dJx* dv*  Re; Pr oy*

u:ﬁ:

» Based on the above equation, the expression for temperature can be :

f
|

| | | | (Irfp:f: \I
T# = f|x* v* Rey, Pr,— |
- | ' e f.f

» The dependence on dp*/dx* originates from the influence of the geometry
on the fluid motion (u* and v*), which, in turn, affects the thermal conditions

| ke (T, —T,)0T* ke dT*
] = — e —
L (Ti' o Tﬂﬂ) a."'h‘ y*=0 L a."’pl‘ y¥=0
& Nusselt number to thermal boundary layer
hLL J7T* . - .
Nu=s— =+ = is what friction to velocity boundary layer. It
ky 9y y*=0 can be computed for different fluids and
_ different valuesof VandL __ 71

Nu = f(x*, Re;, Pr) u=— = f(Re,Pr)



Physical interpretation of dimensionless Reynolds number

Dimensionless parameters have physical interpretations that relate to conditions
in the flow, not only for boundary layers but also for other flow types, such as
the internal flows

Reynolds number Re,, may be interpreted as the ratio of inertia to viscous forces
in a region of characteristic dimension L. Inertia forces are associated with
increase in momentum of a moving fluid

Inertia forces (per unit mass) are of the form u du/dx. The order of magnitude
approximation gives F,~ V2/L

Similarly, the net shear force (per unit mass) is u(0u/dy) and is approximated as

Fs =~ uV/L? 1
. F pViIL  pvL

F uwvil?  u

Re, determines the existence of laminar or turbulent flow. The magnitude Re,
influences the velocity boundary layer thickness & . With increasing Re, at a fixed
location on a surface, viscous forces become less influential relative to inertia
forces. Hence the effects of viscosity do not penetrate as far into the free stream,
and the value of 6 diminishes




Physical interpretation of dimensionless Prandtl number

» The Prandtl number, Pr is defined as the ratio of the kinematic viscosity, also
referred to as the momentum diffusivity, v, to the thermal diffusivity a.

» Value of Pr strongly influences the relative growth of the velocity and thermal
boundary layers

» For laminar boundary layers (in which transport by diffusion is not overshadowed
by turbulent mixing):

» Prandtl number of gases is near unity, in which case 6 t = &. For oils of highly
viscous nature : Pr>>1 and 6 t <<6



Selected dimensionless groups of heat and mass transfer -- Reference purpose

Group Definition Interpretation
Biot number hL Ratio of the internal thermal resistance of a solid to the
(Bi) s boundary layer thermal resistance
5
Mass transfer h L Ratio of the internal species transfer resistance to the
Biot number boundary layer species transfer resistance
' D,y
(Bi,) -
Bond number g(p; — p,)L° Ratio of gravitational and surface tension forces
(Bo) o
Coefficient (A Dimensionless surface shear stress
of friction V22
(Cy)
Eckert number V2 Kinetic energy of the flow relative to the boundary layer
(Ec) c,(T, - T.) enthalpy difference
Fourier number ol Ratio of the heat conduction rate to the rate of thermal
(Fo) 12 energy storage in a solid. Dimensionless time
Mass transfer Dot Ratio of the species diffusion rate to the rate of species
Fourier number L_? storage. Dimensionless time
(Fo,) .
Friction factor P - Dimensionless pressure drop for internal flow
(f) (L/D)pu,,/2)

Contd----



Group Definition Interpretation
Grashof number eB(T. - T)HL Measure of the ratio of buoyancy forces to viscous forces
(Gry) Ve
Colburn j factor St pr2 Dimensionless heat transfer coefficient
(Ju)
Colburn j factor s Dimensionless mass transfer coefficient

JIJ‘J‘J'
Jakob number el —13) Ratio of sensible to latent energy absorbed during
(Ja) h, liquid—vapor phase change

g

Lewis number 4 Ratio of the thermal and mass diffusivities
(Le) D,y
Mach number Vv Ratio of velocity to speed of sound
(Ma) a
Nusselt number E Ratio of convection to pure conduction heat transfer
(Nuy) k;
Peclet number VL Ratio of advection to conduction heat transfer rates
(P(?'[_] —_— = RE_;_ Pr

Contd----



Group Definition Interpretation
Prandtl number Cpll Vv Ratio of the momentum and thermal diffusivities
(Pr) k a o
Reynolds number E Ratio of the inertia and viscous forces
(Rey) v
Schmidt number ¥ Ratio of the momentum and mass diffusivities
(Sc) Dyg
Sherwood number h, L Ratio of convection to pure diffusion mass transfer
(Sh.[) DAE
Stanton number h _ _Nu Modified Nusselt number
(S1) pVce, Re, Pr
Mass transfer h,  Sh Modified Sherwood number
Stanton number V  Re, Sc
(SIFH)
pViL e .
Weber number Ratio of inertia to surface tension forces
(We) =




Boundary layer analogies
C.and Nu are of primary interest to convection heat transfer problems in this course

du* ou* dp* 1 d*u* oT* oT* 1 o'T*

w_ e & —- — - .!.-I'.* —_t U* - S
o dy* dx¥  Re, dy* dx* dy*  Re; Pr dy**

Fluid Flow Heat Transfer
dp* dp
i = f{x V. Re,. "—,J T+ = f(x v*. Re,. Pr. L,}
' dx’* dx*
a S !L aT:}:
Cr= - i Nu= == = +—
RE“L a}‘ y*=0 k a} §*20
2 .
Cf = —f(}(‘.,RE’L) NH - f(.l'"‘._ RFL‘ PI‘)
Re;

Nu = f(Re;. Pr)

» |If two or more processes are governed by dimensionless equations of the same

form, the processes are said to be analogous. The above equations for a particular
geometry are interchangeable
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Assumptions involved in deriving numerical relations for external flow

In this module we focus on the problem of computing heat transfer rates to or
from a surface in external flow. In such a flow boundary layers develop freely,
without constraints imposed by adjacent surfaces

Examples of external flow include fluid motion over a flat plate (inclined or
parallel to the free stream velocity) and flow over curved surfaces such as a
sphere, cylinder, airfoil, or turbine blade

The derivations here are confined to problems of low-speed, forced convection
with no phase change occurring within the fluid

In forced convection, the relative motion between the fluid and the surface is
maintained by external means, such as a fan or a pump, and not by buoyancy
forces due to temperature gradients in the fluid

Forward

stagnation point Separation point

Boundary layer




Assumptions involved in deriving numerical relations for external flow

» The primary objective is to determine convection coefficients for different flow
geometries. In particular, we wish to obtain specific forms of the functions that
represent these coefficients

Nu, = f(x* Re,, Pr)

Nu, = f(Re,, Pr)

» The subscript x emphasizes conditions at a particular location on the surface.
The overbar indicates an average from x* = 0, where the boundary layer begins
to develop, to the location of interest

» The theoretical approach involves solving the boundary layer equations for a
particular geometry. For example, obtaining the temperature profile T* from
such a solution

< Laminar | Turbulent > T
u_, Tm / \
X =
—
~50 .

Forward

stagnation point Separation point

Boundary layer




Experimental method to determine Nusselt number

» If a prescribed geometry, such as the flat plate in parallel flow, is heated electrically to
maintain T, > T_,, convection heat transfer occurs from the surface to the fluid

» It would be a simple matter to measure T, and T, as well as the electrical power, E -
I, which is equal to the total heat transfer rate g. The convection coefficient k,, which
is an average associated with the entire plate, could then be computed from
Newton’s law of cooling

» From knowledge of the characteristic length L and the fluid properties, the Nusselt,
Reynolds, and Prandtl numbers could be computed from their definitions

» The foregoing procedure could be repeated for a variety of test conditions. We could
vary the velocity u., and the plate length L, as well as the nature of the fluid, using,
for example, air, water, and engine oil, which have substantially different Prandtl
numbers

I'E=q=hA(T,-T.)

—_—
/ — 1, A,
> 514

e I >

7

L Insulation

— I||||I
I g




Experimental method to determine Nusselt number

» By experimenting with many different values of the Nusselt numbers
corresponding to a wide range of Reynolds and Prandtl numbers, the results
could be plotted on a log—log scale, as shown in Fig. a

» The results associated with a given fluid, and hence a fixed Prandtl number,
fall close to a straight line, indicating a power law dependence of the Nusselt
number on the Reynolds number. Considering all the fluids, the data may
then be represented by an algebraic expression of the form:

Nu; = CRe™ Pr"

» Since the values of C, m, and n are often independent of the nature of the
fluid, the family of straight lines corresponding to different Prandtl numbers
can be collapsed to a single line by plotting the results in terms of the ratio,
N, /Pr", as shown in Fig. b

Nu; = CRe]"Pr" Pry
Pr,
Pr 1 o
— N
Log Nu; Log (f;i-)
L) F
Log Re; Log Re;

(1) (h) Contd----



Experimental method to determine Nusselt number

Nu; = CRe™ Pr"

» The above numerical expression for average Nusselt number will be invoked for
many special cases, and it is important to note that the assumption of constant
fluid properties is often implicit in the results

> As the fluid properties vary with temperature across the boundary layer and this
variation can certainly influence the heat transfer rate . Hence such variation is
catered for in the above numerical expression in two ways as below:

» In first, average Nusselt number is used with all properties evaluated at a
mean boundary layer temperature T, termed the film temperature

I, + T,
2

» The alternate method is to evaluate all properties at Tee and to multiply the
right-hand side of the above Nusselt number Equation by an additional
parameter to account for the property variations.

» The parameter is commonly of the form (Pr./Pr)" or (u../K), where the

subscripts o= and s designate evaluation of the properties at the free stream and
surface temperatures, respectively

Ty



Derivation for a laminar flow over isothermal flat plate: Methodology

<Laminar | Turbulent >
u_, T

ool o

[
L) Free stream —
8(x) T, Free stream 5,00)

+ ] Thermal

u Velocity -T-f
I3} T boundary [T boundary
—_— layer layer

=

l—b'e
YYYYYYY
I
el
!
I
|

R . ]

s The first step is analytical determination of the velocity and temperature

distributions in the laminar boundary layers
» From the knowledge of these distributions, expressions for local, average

friction coefficients and Nusselt numbers can be determined

Contd----



Derivation for a laminar flow over isothermal flat plate : A similarity solution

» The major convection parameters may be obtained by solving the appropriate
form of the boundary layer equations

» Assuming steady, incompressible, laminar flow with constant fluid properties,

negligible viscous dissipation and recognizing that dp/dx = 0, the boundary layer
equations can be formulated as below:

Continuity equation:

Momentum equation:

Energy equation:

du Jv

a+a—}!— 0

Mau +Uau B vﬂ
ax  dy 09y
ox dy - dy*

» Solution of these equations is simplified by the fact that for constant properties,

conditions in the velocity (hydrodynamic) boundary layer are independent of

temperature and species concentration

be solved easily

Once the hydrodynamic problem is solved momentum and energy equations can



Hydrodynamic solution to the flat plate

Hydrodynamic solution for the flat plate problem is obtained by the method of
Blasius, a German Engineer who invented this solution. The first step in this
method is to define a stream function W (x, y) such that:
oy s
= l and U r'_t’{
dy ox

Based on the stream function assumption, continuity equation , is automatically
satisfied and no longer needed.

Next new dependent and independent variables, f and n, respectively, are then

defined as follows:
. 1
(n) =
Jan HWJV.\',’HW

n= yJu./vx

This introduction of new independent variable,n called similarity variable allows
transformation of two partial differential equations (momentum and energy
equations) into a single ordinary differential equation

Blasius reasoned that the nondimensional velocity profile u/u_, should remain
unchanged when plotted against the nondimensional distance y/8, where 6 is
the thickness of the local velocity boundary layer at a given x

Contd----



Hydrodynamic solution to the flat plate

» The Blasius solution is termed a similarity solution, and n is a similarity variable.
This terminology is used because, despite growth of the boundary layer with
distance x from the leading edge, the velocity profile u/u., remains geometrically
similar

— = w(lj ) -0
U o u

Ll ]

» Since it has been proved by Stokes earlier that boundary layer thickness & is
proportional to V= it leads to expression for similarity variable n

17
(n) =
ra u_vxiu,,
n= yJu./vx

» As per definition of stream function the velocity components u and v are:

U= di and v = —di
dy 0x

- h;f y rn VX ::If L df _ _r_?i = VX {i)f LU |V |
Jdy  dn dy f:m dn dx u. ox 2 \Vu_x




Hydrodynamic solution to the flat plate
oy / dl vx d ) , R
g N dy dn _ 1-:}‘ s df b Ht;f Hr)f o | V_ o
rJ\ on dy f“? dn r}x 2 Nu x

1 |v |
Velocity component v can be simplified as: U= E,/ — (T? y f}
n

By differentiating the velocity components, it may also be shown that:

i u. d zf

0x 2x ? dn?

a_u _ |- d*f
dy  Nvxdn?

u  ut df

dy?  vxdn’
Substituting the above terms in momentum equation :

du oul 0°u

Contd----



Hence the modified momentum equation can be written as

d*f B

dn?

Hydrodynamic solution to the flat plate

d’f
dn’

2

+f

0

Hence the hydrodynamic boundary layer problem is reduced to one of solving a
nonlinear, third-order ordinary differential equation. The appropriate boundary

conditions are:

u(x,0)=v(x,0)=0

In term of similarity variables the boundary conditions are:

df
dn

n=>0

= f(0)=0

and

and

X, o) =1_

df

dn

n—==

The solution to the differential equation,
subject to the conditions above, may be
obtained by a series expansion or by numerical

integration

50 S5.0x
/v  \/Re,

I

£ ar _ u i
i dn U. dnq2
0 0 0 0.332
0.5 0.042 0.166 0.331
1.0 0.166 0.330 0.323
1.5 0.370 0.487 0.303
2.0 0.650 0.630 0.267
5 0.996 0.751 0.217
3.0 1.397 0.846 0.161
3.5 1.838 0.913 0.108
4.0 2.306 0.956 0.064
4.5 2.790 0.880 0.034
5.0 3.283 0.992 0.016
h.b 3.781 0.997 0.007
6.0 4.280 0.999 0.002
oo oo 1 )]

Flat plate laminar
boundary layer functions

Contd----



Hydrodynamic solution to the flat plate

» The boundary layer thickness increases with increasing kinematic viscosity

v and with increasing distance from the leading edge but decreases with
increasing free stream velocity . Hence a large free stream velocity will

suppress the boundary layer and causes it to be thinner

its definition and the du/ dy relation:

ol

Substituting the value of the second derivative of

fatn =0 from the table:

lu, d*f

Tw — K7 - = Wl \l.ﬁ

> The shear stress on the wall can be determined from

F n=>0

_0.332pu

B2

VRe,

Then the local skin friction coefficient becomes:

f daf _u &
dn U, dn 2
0 0 0.332
0.042 0.1e6 0.331
0.166 0.330 0.323
0.370 0.487 0.303
0.650 0.630 0.267
0.99¢ 0.751 0.217
1.397 0.846 0.161
1.838 0.913 0.108
2.306 0.956 0.064
2.790 0.980 0.034
3.283 0.992 0.016
3.781 0.997 0.007
4,280 0.999 0.002
00 1 0

Ty

= 0.664 Re !

Flat plate laminar

boundary layer functions



Solution to the thermal energy equation

» From knowledge of conditions in the velocity boundary layer, the energy
equation can now be solved

» By introducing a dimensionless temperature, T* and assuming a similarity
solution of the form: T* =T (n)

™= [(T-T)/(T.-T)]
» The energy equation which originally is a partial differential equation reduces to:

d°T*  Pr , dT*

— + = ()
dn- 2 dn

» Note the dependence of the thermal solution on hydrodynamic conditions
through appearance of the variable f in the above equation. The appropriate
boundary conditions are:

T#(0) =0 and T%*(c0) =1



Solution to the thermal energy equation

d°T* Pr .dT*
—+—=1

dn- 2 dn

= () T#0) =0 and T#(eo) =1

» Energy equation may be solved by numerical integration for different values of
the Prandtl number; representative temperature distributions are shown below:

» The temperature distribution is identical to the velocity distribution for Pr = 1.
Thermal effects penetrate farther into the velocity boundary layer with
decreasing Prandtl number and transcend the velocity boundary layer for Pr< 1

» A practical consequence of this solution is that, for Pr > 0.6, results for the
surface temperature gradient d7*/dn @ n =0 may be correlated by the following
relation

o T, Free stream
dT
— 1 Thermal
/j T boundary
layer
an | _, ! i
= R—
1 1pr
1
0.8 as|\™ I
' / ‘ N 0.6
S
~ 1
= 06 = 0.6 o =
= - -— ~
. / - £0.523 N\ n,
2 04 2 o4l
~\~~ \~~
0.2 0.2 Sea 38
~=al &
~~~~~
0 0 —
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
dffdn = w'u_, 1-7*

(a) (b)
Similarity solution for laminar flow over an isothermal plate. (a) The x- component of the velocity. (b)
Temperature distributions for Pr=0.6, 1, and 7



h,

h,

Solution to the thermal energy equation

dy

h.x
k

= 0.332Re'2Pr'3  Pr>06

The ratio of the velocity to thermal boundary layer thickness is

C _P 141
— b ¥
U,
= Free stream T, Free stream
Velocity T’ Thermal
] boundary [T boundary
‘ layer 5‘4 layer
7,
1 1 s
1
08 08|\ ™ I
: / ‘ 2 0.6
~
- 1
= 06 2 06 S 7
. - -~ -~
. / - \0.523 NN,
= 04 = 04 S
~\~..~~. \~~
0.2 0.2 St ‘\‘
~~a.
~~~~~
0] 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
dffdn = wiu, 1-7*%

(a)



Problem: Engine oil at 100°C and a velocity of 0.1 m/s flows over both surfaces of a
1m-long flat plate maintained at 20°C. Determine a)The velocity and thermal

boundary layer thicknesses at the trailing edge b) The local heat flux and surface
shear stress at the trailing edge

_—9
%_EHQIHEDJD ~ fbf .
Uos=0.1m/s — '/’, S— T¢=20°C
T.=100°C

f_—1m

PROPERTIES: Tuble 4.5, Engine Oil (T¢=333 K): p =864 kg/m’, v=286.1 x 10° m*/s, k = 0.140
W/m-K, Pr=1081.



Solution: : Calculate the Reynolds number to determine nature of the flow

fRag = u,L  0.lm/sxlm 1161

v 86.1x10"%m?/s

At x = L the flow is laminar, hence boundary layer thickness can be calculated as:

et p—1/2 < ~1/2 |
6 =5LRe; "~ =5(Im)(1161) =0.147m
5 =6Pr 13 =0.147m(1081) V3 =0.0143m

The velocity and thermal boundary layers are given by expressions:

5=SLRe; 2 =5(1m)(1161) /% =0.147
6 =5LRe; "~ =5(Im)(1161) =0.147m
y

Se=S8Pr /3 =0.147m(1081) "7 =0.0143m
The local and convective heat flux are given by:

Im

Q% =hy (Ts — T, ) =16.25W/m? -K(20-100)° C = ~1300 W/ m>

0.332(1161)" 2 (1081)" 3~ 16 25W/m? K

Contd----



Also, the local shear stress is:

~ 864kg /fm3
2

rg 1 =0.0842ke/m-s = 0.0842 N/ m>

-1/2

2 |
ro1 =2520.664Re; /2 (0.1m/s)” 0.664(1161)
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The cylinder in a cross flow

» As shown in Fig. the free stream fluid is brought to rest at the forward stagnation
point, with an accompanying rise in pressure

» From this forward stagnation point, the pressure decreases with increasing x, the
streamline coordinate, and the boundary layer develops under the influence of a
favorable pressure gradient (dp/dx < 0)

» The pressure will eventually reach a minimum, and toward the rear of the cylinder
further boundary layer development occurs in the presence of an adverse pressure
gradient (dp/dx > 0)

» Unlike conditions for the flat plate in parallel flow, upstream velocity, V differ, with
u.. now depending on the distance x from the stagnation point

Forward
stagnation point Separation point

Boundary layer




The cylinder in a cross flow

» From Euler’s equation for an Inviscid flow, u.,(x) must exhibit behavior opposite to
that of p(x). That is, from u. = 0 at the stagnation point, the fluid accelerates
because of the favorable pressure gradient (du../dx > 0 when dp/dx < 0), reaches a
maximum velocity when dp/dx = 0, and decelerates because of the adverse
pressure gradient (du../dx < 0) when dp/dx > 0)

» As the fluid decelerates, the velocity gradient at the surface, dou/dy at y=0,
eventually becomes zero. At this location, termed the separation point, fluid near
the surface lacks sufficient momentum to overcome the pressure gradient, and
continued downstream movement is impossible

» Since the oncoming fluid also precludes flow back upstream, boundary layer
separation must occur. This is a condition for which the boundary layer detaches
from the surface, and a wake is formed in the downstream region. Flow in this
region is characterized by vortex formation and is highly irregular

<Favorab§e pressure gradient ! Adverse pressure gradient >
u_(x) ) I 9
oo /4 /4
/ N ar <0 I S =0
I
7 PR |
I
|
C
=

u_(x)

o

Forward

stagnation point Separation point

S [ [ \
eparation point Q f) \Wake

Vortices

Boundary layer Flow reversal

Boundary layer formation and separation on a circular cylinder in cross flow



The cylinder in a cross flow

» The occurrence of boundary layer transition, which depends on the Reynolds
number, strongly influences the position of the separation point. For the circular
cylinder the characteristic length is the diameter, and the Reynolds number is

defined as:

Rep =

_pVD VD

u V

» Since the momentum of fluid in a turbulent boundary layer is larger than in the
laminar boundary layer, it is reasonable to expect transition to delay the

occurrence of separation

> If Rep < 2 x 10°, the boundary layer is laminar, and separation occurs at 6 = 80°).
However, if Re, 2 2 x 10°, boundary layer transition occurs, and separation is

delayed to 6 = 140°

Laminar Laminar Transition Turbulent
boundary boundary boundary
layer layer
e —_—
V — V —
_h. _h'
Rep, <2 % 10° Rep22 % 10°
Separation Separation

The effect of turbulence on separation



The cylinder in a cross flow

» Boundary layer transition processes strongly influence the drag force, F,, acting on
the cylinder. This force has two components, one of which is due to the boundary
layer surface shear stress ( friction drag). The other component is due to a
pressure differential in the flow direction resulting from formation of the wake (
form, or pressure, drag). A dimensionless drag coefficient C, may be defined as

Fp
:"ljf ( 8 V 11'"'2 )

Cp

A:is the cylinder frontal area (the area projected perpendicular to the free stream
velocity)

» The large reduction in C, that occurs for Re, > 2 x 10° is due to boundary layer
transition, which delays separation, thereby reducing the extent of the wake
region and the magn[:g[yde of the form drag

Beop = 80°
No separation o = 140°
sep

S 3
2 Smooth cylinder
1
0.6
0.4 24
0.2 Cp= Rep Sphere
0.1
0.06
107! 10° 10! 102 10° 10* 10° 10°

_VD
Drag coefficients for a smooth circuIarR?VTinder in cross flow and for a sphere.
Boundary layer separation angles are for a cylinder



The cylinder in a cross flow — Convection heat transfer correlation

» Experimental results for the variation of the local Nusselt number with 8 are shown
in Fig. for the cylinder in a cross flow of air . Nusselt number strongly varies with
boundary layer development on the surface

» For Rep < 10°,starting at the stagnation point, Nuy decreases with increasing 6 as a
result of laminar boundary layer development. However, a minimum is reached at 0
= 80°, where separation occurs and Nug increases with 6 due to mixing associated
with vortex formation in the wake

» For Re, 210°, variation of Nusselt number is characterized by two minima. The
increase in Nugy with increasing ReD is due to corresponding reduction in boundary
layer thickness

0 30 60 90 120 150 180
Angular coordinate, 8

Local Nusselt number for airflow normal to circular cylinder



The cylinder in a cross flow — Correlation relations

At the forward stagnation point for Pr > 0.6, boundary layer analysis yields an

expression:

An empirical correlation due to Hilpert that has been modified to account for
fluids of various Prandtl numbers for Pr 20.7 : The above equation is applicable
for cylinders as well as non-circular cross sections. In this equation all the

properties are evaluated at film temperature

— WD

Nup = === CRep pr'?

Nup (@ = 0) = 1.15 Rep* Pr'”

—_

Rey, C m
044 0.989 0.330
4-40 0911 0.385
404000 0.683 0.466
4000-40,000 0.193 0.618
40,000-400,000 0.027 0.805




The cylinder in a cross flow — Correlation relations

Other correlations have been suggested for the circular cylinder in cross flow
where all properties are evaluated at T, except Pr, which is evaluated at T_ . If Pr

<10, n =0.37, If Pr> 10, n= 0.36
Nup = CRep Pr” [

ﬂ 1/4
Pr,

r).? 2. PP & 5[}01

1 < Rep < 10°

Geometry Rey, £ m
Square
v~ b 6000-60,000 0.304 0.59
Y — ID 5000-60,000 0.158 0.66
Hexagon
v T 5200-20,400 0.164 0.638
— D
4 20.400-105,000 0.039 0.78
£
Vi jJ_ 4500-90.700 0.150 0.638
Thin plate perpendicular to flow
D T Front 10.000-50.000 0.667 0.500
V — D
2 Back 7000-80.000 0.191 0.667




The cylinder in a cross flow — Correlation relations

Churchill and Bernstein have proposed a single comprehensive equation
that covers the entire range of Re,, for which data are available, as well
as a wide range of Pr. The equation is recommended for all Re,, Pr > 0.2
and has the form:

_ 0.62 Reli? pri3 Ren V2T
Nip = 0.3 D [+ (—”)

_|_
[1+ (0.4/Pr)*3714 282,000

Each correlation is reasonable over a certain range of conditions, but
for most engineering calculations one should not expect accuracy to
much better than 20%.



Sphere — Correlation relations

Boundary layer effects associated with flow over a sphere are much like those for
the circular cylinder, with transition and separation playing prominent roles. All
the properties except u. are evaluated at T,

1/4
Nup = 2+ (04Relf? + o.oﬁﬂegﬂ)Pr“-‘{ﬁ]

Uy
0.71 < Pr < 380
3.5 < Rep, < 7.6x10*
1.0 < (ufpg) £3.2
In the limit of very small Reynolds numbers (creeping flow), the coefficient is
inversely proportional to the Reynolds number and the specific relation is
termed Stokes law

A special case of convection heat and mass transfer from spheres relates to
transport from freely falling liquid drops is given by relation:

4

400

200 0o = 80°

100 1
) No separation Oy = 140°
40

Nup = 2+ 0.6 Rep® Pr'”? y

Smoath cylinder

CD
=R s

107 10° 10! 10° 10° 104 10° 108
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Introduction- Internal flow

» Most fluids, especially liquids, are transported in
circular pipes. This is because pipes with a circular
cross section can withstand large pressure differences Circular pipe
between the inside and the outside without
undergoing any distortion

» Noncircular pipes are usually used in applications such
as the heating and cooling systems of buildings where Water
the pressure difference is relatively small 20 atm

» For a fixed surface area, the circular tube gives the
most heat transfer for the least pressure drop, which  Rectansular
explains the overwhelming popularity of circular “dut
tubes in heat transfer equipment

» Frictional heating must be considered for flows that
involve highly viscous fluids with large velocity

. Aips
gradients

1.2 atm
» In most practical applications, the flow of a fluid
through a pipe or duct can be approximated to be
one-dimensional, and thus the properties can be
assumed to vary only in direction of flow




Mean velocity in a circular tube

» In external flow, the free-stream velocity served as a
convenient reference velocity for use in the evaluation of
the Reynolds number and the friction coefficient

Circular pipe

» In internal flow, the fluid velocity in a tube changes from /
zero at the surface because of the no-slip condition, to a

: o . We
maximum at the tube center. Therefore, it is convenient 50:5;
to represent average or mean velocity [ | For
incompressible flow [, is constant when cross sectional V=0
area is constant ED\
A - 3y
m=pV,A. = | pWr, x)dA, 5/ max
" L.° =
where m is the mass flow rate, pis the density, A_ is the (@) Actual
cross sectional area, and [/ (r, x) is the velocity profile. —
Then the mean velocity for incompressible flow in a E— ”
circular tube of radius R can be expressed as: — "
I
(b) Idealized

. ‘R
PV | Ve

o _ _Jo _ S Ny
% o s A Vi, x)rdr




Mean temperature in a circular tube

When a fluid is heated or cooled as it flows through a
tube, the temperature of the fluid at any cross section
changes from T, at the surface of the wall to some
maximum (or minimum in the case of heating) at the tube
center. Therefore it is convenient average or mean
temperature T that remains uniform at a cross section

As per conservation of energy principle, energy
transported by the fluid through a cross section in actual
flow must be equal to the energy that would be
transported through the same cross section if the fluid
were at a constant temperature T

B =i Cols= .‘ C,Tom = ’ pC,TVdA,
Jom JA4,

where C, is the specific heat of the fluid. Then the mean
temperature of the fluid with constant density and
specific heat flowing in circular pipe of radius R is:

. ‘R
' C,Tdm ] C,I(pV 2mrdr)
T — Jm _ J0 _ =

" m ('.»’-?' pal':ﬂm{ﬂRl;' (.'_? ﬂ"f;}.le JO

-F

T(r, x) V' (r;, x) rdr

Circular pipe

(a) Actual

(b) Idealized



Laminar and turbulent flow in the tubes

m

turbulent. Laminar flow is encountered when Re m v
highly viscous fluids such as oils flow in small
diameter tubes or narrow passages

In Re calculation, [, is the mean fluid velocity, Civeular tube:
D is the diameter of the tube, and v= u/p is the _

» Most pipe flows encountered in practice are oV.D V. D

kinematic viscosity of the fluid D, = 4{m$ Y _,
» For flow through noncircular tubes, the
Reynolds number as well as the Nusselt number
and the friction factor are based on the Sguare duct: a
hydraulic diameter D, defined as: , a
D=3 -,
44 h™ 4q
Dy =5
where A_ is the cross sectional area of the tube Xectangularduct: (€7 =
and p is its perimeter o __dab__ b
> Transition from laminar to turbulent flow also " 2a+b) a+bh
depends on the degree of disturbance of the
flow by surface roughness, pipe vibrations, and Re < 2300 laminar flow
the fluctuations in the flow 2300 = Re = 10,000  transitional flow

Re = 10.000 turbulent flow



Hydrodynamic entrance region

For a fluid entering circular tube at uniform velocity, the fluid particles in the layer in
contact with the surface of the tube will come to a complete stop. Subsequently
adjacent layers will slow down as a result of friction

To make up for this velocity reduction, the velocity of the fluid at the midsection of
the tube will have to increase to keep the mass flow rate through the tube constant.
As a result, a velocity boundary layer develops along the tube

The thickness of this boundary layer increases in the flow direction until the
boundary layer reaches the tube center and thus fills the entire tube

The region from the tube inlet to the point at which the boundary layer merges at
the centerline is called the hydrodynamic entrance region, and the length of this
region is called the hydrodynamic entry length L,

The region beyond the entrance region in which the velocity profile is fully
developed and remains unchanged is called the hydrodynamically fully developed
region. Here the velocity profile is parabolic in laminar flow and flatter in turbulent

flow /Velncit}' boundary layer /»-Velﬂci‘ry profile

— -
i t?’ - ~
— - - - - e —— - ]
—— -
> f
- =
I _x
Hydrodynamic entrance region == Hydrodynamically

tully developed region



Thermal entrance region

» Consider a fluid at a uniform temperature entering a circular tube whose surface
is maintained at a different temperature. The fluid particles in the layer in
contact with the surface of the tube will assume the surface temperature

» Due to convective heat transfer in the tube, thickness of thermal boundary layer
formed also increases in the flow direction until the boundary layer reaches the
tube center and thus fills the entire tube

» The region of flow over which the thermal boundary layer develops and reaches
the tube center is called the thermal entrance region, and the length of this
region is called the thermal entry length L,

» The region beyond the thermal entrance region in which the dimensionless
temperature profile expressed as (T, —=T)/(T, - T..) remains unchanged is called
the thermally fully developed region

Thermal
boundary layer

- Temperature profile
T; T
-I -5 / —
] :
T ‘\"n‘
- - — e — 1|} - - -—
1
" 7
— >
=
- X
- Thermal - Thermally

entrance region fully developed region



Characteristics of hydrodynamically and thermally fully developed regions

_ IV (r. x)
Hydrodvnamically fully developed.: % =0 — V=N
Tix) — T, %)

T.(x) — T,

T . )
Thermally fully developed: ;—T

» The friction factor is related to the shear stress at the surface, which is related to the
slope of the velocity profile at the surface. Since the velocity profile remains
unchanged in fully developed region, friction factor remains unchanged too. A
similar argument can be given for heat transfer coefficient in fully developed region

» The derivate (T, -T)/(T, - T,,) with respect to r must also be independent of x

d ( I, —T ) —(0T/97)|, -z £ flx) = G — (T —T.) = k2L KoT/or),_g
e = 7 X . = H. — = N 1. =
o \T, = T,,)|,_» T.— T, Is = M\ds ™ Im | _x x T.— T,
Both the friction and convection coefficients remain constant in the fully
developed region of a tube
;:j::clll:;& layer
Velocity boundary layer -Velocity profile T, I, -Temperature profile
3 f i é é | ’ —
z t ] - e ———— -— - > __;..-——:"'EEE___ % - —
e > = =
’L Hydrodynamic entrance region ! Hydrodynamically !_b Thermal ! Thermally

fully developed region entrance region fully developed region



Characteristics of hydrodynamically and thermally fully developed regions

_ V(7. x)
Hydrodvnamically fully developed.: . {iT -=0 — V'=Vr
Thermaily fully developed: 0 [L& = T x| _
hermally fully developed. o | T =70 |~

Unlike the velocity profile, the temperature profile can be different at different
cross sections of the tube in the developed region, and it usually is. However,
the dimensionless temperature profile defined above remains unchanged in
the thermally developed region when the temperature or heat flux at the tube
surface remains constant

For fluids with Pr ~ 1, such as gases, the two boundary layers essentially
coincide with each other. For fluids with Pr >> 1, such as oils, the velocity
boundary layer outgrows the thermal boundary layer. Hence hydrodynamic
entry length is smaller than thermal entry length



Characteristics of hydrodynamically and thermally fully developed regions

» Consider a fluid that is being heated (or )l
cooled) in a tube as it flows through it. The ,
friction factor and the heat transfer f
coefficient are highest at the tube inlet
where the thickness of the boundary layers hy
is zero, and decrease gradually to the fully £,
developed values

I
I
» Pressure drop and heat flux are higher in the | |
. I
entrance regions of a tube, and the effect of |Entrance) _ Fully

. | region | developed
I - .
the entrance region is always to enhance the | region

=Y

|
average friction and heat transfer | |
coefficients for the entire tube | |

» This enhancement effect can be significant ) !

for short tubes but negligible for long ones Fully developed
— - flow -

\
\ Thermal boundary layer

Velocity boundary layer



Magnitude of hydrodynamic and thermal entry lengths

In laminar flow, the hydrodynamic and thermal entry lengths are approximately:

05ReD
05RePrD="Pr J[I_r. laminar

L.-'.‘. laminar — U
~= ().

L.-‘. laminar

In the limiting case of Re = 2300, the hydrodynamic entry length is 115D

» In turbulent flow, the intense mixing during random fluctuations usually
overshadows the effects of momentum and heat diffusion, and therefore the
hydrodynamic and thermal entry lengths are of about the same size and
independent of the Prandtl number.

» Also, the friction factor and the heat transfer coefficient remain constant in
fully developed laminar or turbulent flow since the velocity and normalized
temperature profiles do not vary in the flow direction

— 1135 1/4
L turbulent — 1.359 Re

In practice, it is generally agreed that the entrance effects are confined to be:

"E-f"-'.. turbulent ir turbulent 10D



Variation of Nusselt number in a turbulent flow

The variation of local Nusselt number along a tube in turbulent flow for both
uniform surface temperature and uniform surface heat flux is given below for
the range of Reynolds numbers encountered in heat transfer equipment

The Nusselt numbers and thus the convection heat transfer coefficients are
much higher in the entrance region

The Nusselt number reaches a constant value for x > 10D

The Nusselt numbers for the uniform surface temperature and uniform
surface heat flux conditions are identical in the fully developed regions, and
nearly identical in the entrance regions. Therefore, Nusselt number is

insensitive to the type of thermal boundary condition
800 I I I I I I I T I

700 - T

Nu, 7(Z;= constant)
—\-Ux, (g, = constant) L J _

600

L 500 D |
=
z
~ 400 .
5;.? 5
o Re=2 X 105
“ 300
200 103 -
6 X 104
100 3 % 104 .
104
| | | | | |
0 2 4 6 8 0 12 14 16 18 20

x/'D



General thermal analysis of heat transfer to a fluid flowing in a tube

» The conservation of energy equation for the steady flow of a fluid in a tube is:
Q =mCy(I, — I

where T, and T, are the mean fluid temperatures at the inlet and exit of the
tube, respectively, and Q is the rate of heat transfer to or from the fluid. The
temperature of a fluid flowing in a tube remains constant in the absence of
any energy interactions through the wall of the tube

» The thermal conditions at the surface can usually be approximated with
reasonable accuracy to be constant surface temperature (T, = constant) or
constant surface heat flux q, = constant

» Constant temperature condition is realized when a phase change process such
as boiling or condensation occurs at the outer surface of a tube. The constant
surface heat flux condition is realized when the tube is subjected to radiation or
electric resistance heating uniformly from all directions

O
r— , _____ 1
‘Til |Te
I |
1 (pT: I- — I‘m CPTE
I |
- __ J

Energy balance:

O =m CP(TE—T?.)



Constant Surface Heat Flux (g, = constant)

T4
In the case of q.= constant, the rate of heat Entrance | _ Fully developed f/
transfer:

region region
Q =¢g. 4, =mC(I, — T}

The mean fluid temperature at the tube exit is:

Mean fluid temperature increases linearly in
the flow direction in the case of constant
surface heat flux, since the surface area
increases linearly in the flow direction 0 ) +—

qs
=nI.—-T,) — I.,=T,++

——
— |
g [ERE _
—_——
— -
—
—
—
—
—
—
— -
—
—

7 !

T!’
In the fully developed region, the surface @
1

temperature T, will also increase linearly in the
flow direction since h is constant and thus T, - T, %) )
= constant b T oy Tey




Constant Surface Heat Flux (g, = constant)

The slope of the mean fluid temperature T,, on a T-x diagram can be
determined by applying the steady-flow energy balance to a tube slice of
thickness dx

T, d; 80 =h(T,—T,)dA
mC,dT,, = ¢(pdx) , Zm_ j {) = constant 0= h :
P dx  mGC, |_¥_|
T | | T, +dT,
dr,, dI, ] ™ m
dx  dx mC,T,, + :ﬂ m C,(T,,+dT,)
Also, the requirement that the dimensionless T T,
temperature profile remains unchanged in the fully L/
developed region: dx
J TS_T)_O 1 aTs HT)_U HT_GFT;
ox\T, — T, T,—T,\ox ox) ox  dx
o7 dI. dI,, qgp For a developed flow in a tube subjected to
ax dc dx  mC, constant o stant surface heat flux, the temperature

gradient is independent of x

{:;Tzfé'TS:(me 24,

ox  dx  dr p VG R

Hence for a circular tube: = constant



Constant Surface Temperature (7, = constant)

From Newton’s law of cooling, the rate of heat transfer to or from a fluid flowing in a

tube:
T4

T, |-

QI — ’I?ASATEW& = hA(Is — 1,)ave

I; = constant I

where h is the average convection heat transfer
coefficient, A, = DL for a circular pipe of length
L), and T,,. is some appropriate average
temperature difference between the fluid and
the surface.

B |

(T, approaches T, asymptotically)

T,,. can be approximated by the arithmetic mean

temperature difference T, , 0 7
AT, + AT, (I,—T)+(T,—T) T, + T,
AT e = ATy = " - q =TI — 2 - T Tg
= Fa i i N
- Ts B Tb
where T, = (T, + T,)/2 is the bulk mean fluid N T, = constant

temperature, which is the arithmetic average of
the mean fluid temperatures at the inlet and the
exit of the tube.



Constant Surface Temperature (7, = constant)

Consider the heating of a fluid in a tube of constant 80 = h(T,—T,)dA
cross section whose inner surface is maintained at a #
constant temperature of T,. Mean temperature of T, | ¥ | T, +dT,
the fluid T, will increase in the flow direction as a o T
result of heat transfer. The energy balance on a m Cyl = W 1 (T, +dT,)
differential control volume shown in Fig: :L J: /Ts
mC,dT,, = h(T; — T,,)dA, =
. . : . T
Since differential surface area is dA, = pdx, where T, = constant |

p is the perimeter of the tube, and that dT,, = L
-d(T, - T,), since T, is constant, the relation above
can be rearranged as

a1 — Tm) hp
= ———dx L
I, — T, mQC,

(T,, approaches T asymptotically)

Integrating from x = 0 (tube inlet where T, = T,) to
x =L (tube exit where T, =T,

LT, hd, 5@
YT mC,

N\t

L

e

= constant



Constant Surface Temperature (7, = constant)

» A, = plL is the surface area of the tube and h is the constant average
convection heat transfer coefficient: T

I,=T, — (I, — T)) exp(—hd/m (-:U')

T; = constant I

I}ﬂi';

» This relation can also be used to determine
the mean fluid temperature T_(x) at any x
by replacing A, =plL by px

|

|

|

|

|

|

|

|

|

|

(T, - approaches T, asymptotically) :
» Temperature difference between the fluid I
T

|

and the surface decays exponentially in the ’ Ly x
flow direction, and the rate of decay T, T,
depends on the magnitude of the exponent @ e 9‘
hA, /m-C, as shown in Fig. \T5=constﬂn‘[

» hA, /m-C,is a dimensionless parameter /
and is termed as NTU (number of transfer r,_{@ 91
20°C —-Ji:,Cp .

Ny

T, =100°C

units) and is a measure of effectiveness of
heat transfer systems

» NTU > 5 indicates the exit temperature of
the fluid is almost equal to surface

NTU=hd, f'n'rzCP Tr.c

0.01 208
temperature 0.05 239
010 276
050 515
100 706
5.00 995

10.00 100.0



Constant Surface Temperature (7, = constant)

hA,
In[(T; — THNT; — T))]

1'; = constant I

I}&];

wd

mc, = —

But it is known that:
O = g4, = mC(T, — T)

Therefore heat rate in constant surface

|

|

|

|

|

|

|

|

|

|

(Tm approaches TS asymptotically) :
temperature condition can be expressed as: l
T

|

. 0 T X
g_) = hA 5.& T]_ll r r
T.— T, AT, — AT, 9‘
fﬁ T'lll — : . . : \ T, = constant

In[(T, — T)(T, — T,)] In(AT,/AT)

AT, is termed as logarithmic mean temperature difference and is obtained by
tracing actual temperature profile of the fluid along the tube and is the exact
representation of average temperature difference between surface and the fluid at
inlet



Laminar flow in the tubes

» Consider steady laminar flow of an incompressible fluid
with constant properties in the fully developed region of a
straight circular tube

» We obtain the momentum and energy equations by
applying momentum and energy balances to a differential
volume element, and acquire the velocity and
temperature profiles by solving them

» Velocity and temperature profiles will be further used to
obtain relations for the friction factor and the Nusselt

number

Assumptions in the derivations:

» In fully developed laminar flow, each fluid particle moves
at a constant axial velocity along a streamline and the
velocity profile V(r) remains unchanged in the flow
direction

Px

q—
_h-
/' T,

T+ dr
i

Px+dx

="
- -1- -
. X
- CE'{.I"
I max

» There is no motion in the radial direction, and thus the velocity component v in the
direction normal to flow is everywhere zero. There is no acceleration since the flow is

steady



Laminar flow in the tubes

» Consider a ring-shaped differential volume element of radius r,

thickness dr and length dx oriented coaxially with the tube, as
shown in Fig.

» The volume element involves only pressure and viscous effects,
and thus the pressure and shear forces must balance each -~

P, P, 4
other. A force balance on the volume element in the flow — —
direction gives :

T?"
(27rdrP), — QmrdrP), , 4 + Qmrdxt), — Qmrdxt), . 5 = 0 />
Dividing by 2ndrdx and rearranging:
Py PX 0D, ,mC0D), ah N [RI"
dx dr —1—@— )
Taking the limit as dr, dx = 0 gives —p— [, 2 Vinax

dp  d(rT)
s + = ()
dx dr

Substituting t= -p(dV/dr) and rearranging the desired equation

bd(dV)_dP
" dr m_j dr | dx



Laminar flow in the tubes

bd(,dV)_de
Pdr\  dr dx

The above equality must hold for any value of r and x, and an equality of the
form f(r) = g(x) can happen only if both f(r) and g(x) are constants. Thus we
conclude that dP/dx is constant

The above equation can be solved by rearranging and integrating it twice to give:
r? dP
=—(—)+ +
V(r) 4M(dx) C,Inr+C,

The velocity profile V(r) is obtained by applying the boundary conditions oV/dr
=0 atr =0 (because of symmetry about the centerline) and V=0 atr =R (the
no-slip condition at the tube surface)

e~ &)

Therefore, the velocity profile in fully developed laminar flow in a tube is
parabolic with a maximum at the centerline and minimum at the tube surface

Vir) =



Laminar flow in the tubes

The mean velocity is determined from its definition:

% b ala) b= sl@

¥ =2 (Copd
Vo o=— Vidr =
-l

The mathematical relation between V(r) and V,, can be established by:

Vi(ry =2V m(l — ;?:)

The maximum velocity occurs at the centerline, and is determined from the

above equation by substituting r =0

ol"::ma\ 2V, m
Pressure Drop: N T \
We note that dP/dx constant, and integrate it from ) | La
x = 0 where the pressure is P, to x = L where the | & —V, |P g /
pressure is P, \ I ; \
dP _Pr— P _ AP ,'f
dx L a L \ Pressure drop: AP _f ép—_




Laminar flow in the tubes

Pressure Drop: 2 e T
dP_Pr—Pi_ AP R" dpP AP -
o= == ButV =-—|— ‘

dx L L Ut Vim ( / b —V, |D q f/
Substituting - AL—PforZ—z in the above equation: \ L o\

8uLV,  32uLY,

ﬁp _— = \ Pressure drop: AP f—rt—”z' |

R? D? o /

e

In practice, it is found convenient to express the pressure drop for all types of internal
flows (laminar or turbulent flows, circular or noncircular tubes, smooth or rough
surfaces) by assuming: (1)the flow section is horizontal so that there are no
hydrostatic or gravity effects, (2) the flow section does not involve any work devices
such as a pump or a turbine since they change the fluid pressure, and (3) the cross
sectional area of the flow section is constant and thus the mean flow velocity is
constant

L P:l m  where the dimensionless quantity f is the friction factor also
AP = f— -
called Darcy friction factor

For a circular tube subjected to laminar flow, friction factor is a function of Re

64 64

PD v m ~ Re




Laminar flow in the tubes

Temperature Profile and the Nusselt Number

Assumptions in the derivation:

» Consider steady laminar flow of a fluid in a circular tube of
radius R. The fluid properties p, k, and C, are constant, and the
work done by viscous stresses is negligible

» The fluid flows along the x-axis with velocity, V. The flow is
fully developed so that is independent of x and thus V=V (r)

» Energy is transferred by mass in the x-direction, and
by conduction in the r-direction (heat conduction in
the x-direction is assumed to be negligible)

mGC, T,

» The steady-flow energy balance for a cylindrical shell element Or-+ar

of thickness dr and length dx can be expressed as:
m Cpfx‘ — m Cpfx‘ vax T Qr o Q}'— dr — 0
where m = pVA_= pV(2nrdr)
Substituting and dividing by 2nirdrdx and rearranging gives:

C T:r+d.r o T.r _ 1 QH—dr o QI'
Pp dx 27rrdx dr




Laminar flow in the tubes

Temperature Profile and the Nusselt Number

CV It+d.r o Tx _ 1 Qr+ff1' o Qr
P-p dx 27mrrdx dr
By taking limits on L.H.S and R.H.S w.r.t dx, dr = 0 gives
T 1 00

ot — _
ox 2pCymrdx o

But conduction heat transfer Q is given by
Fourier’s law of heat conduction:

00 9 oT\ _ o [ T
P g(—ﬁwdz ar) = —2rkdx o\’ ﬁ)

Substituting and using a = k/pCp gives

“VaT—E Jd [ 0T
ox T dr } ar

The rate of net energy transfer to the control volume by mass flow is equal to
the net rate of heat conduction in the radial direction Contd----



Laminar flow in the tubes
Temperature Profile and the Nusselt Number - Constant Surface Heat Flux condition

For fully developed flow in a circular pipe subjected to constant surface heat flux:

oT _ dly  dT, 24 o
= ———— = constant Equation -i

ax dx dx pV,C,R

The governing differential equation for temperature field in circular tube is:

40T _ ad(@j SN
But the velocity at a radius and mean velocity are related by:
ul (;) = 29/ (l — E) Equation -iii

Substituting Eqn.iii and Eq.i in Egn.ii gives :

M%l_;j_id(dr

kR \ R*) Tdr\ dr

The above equation is a second order differential equation , the general solution is
obtained by separating variables and integrating twice:

Contd----



Laminar flow in the tubes

Temperature Profile and the Nusselt Number - Constant Surface Heat Flux condition

By integrating twice : s (1 Ty l d (r dl
kR \ R*) Tdr\ dr
- 4
T(= L2 - Z_)+C, Inr+C
kR( 4R2) ! 2
The above equation is subject to boundary conditions ,at r=0, g—: =0andatr=R, T=T,
g R (3 2 4
T= TS—T—(l—f+—)
kF\4 R> 4R?

But we know the man temperature and mean velocity in a circular tube is given by:

- ‘R
GToi | CI(pV2mrdr)
0

y | ) F'z
J J 2 (R YV ( }‘) = 2% ( 1 — _)
T, == = == | TV x) rd =Vom 2

i i (__:,_, polfm{ﬁRl)qp Oi’rr?rRh J'D {f x} (r t) o : R /

Substituting mean temperature and mean velocity in temperature field equation we get:

_ 119K _ 24k _Bk_ .k hD
Tm—ﬂ—ﬂ Ic =) h_llR_llD_4'36D - Nu = 2 = 436



Laminar flow in the tubes

Temperature Profile and the Nusselt Number- Constant Surface temperature condition

» The solution procedure for constant surface temperature is more complex as it
requires iterations, but the final Nusselt number relation obtained is equally
simple as that of constant surface heat flux condition:

hD _
Nu = = 3.06
k
» The thermal conductivity k for use in the Nu relations above should be
evaluated at the bulk mean fluid temperature, which is the arithmetic average

of the mean fluid temperatures at the inlet and the exit of the tube

» For laminar flow, the effect of surface roughness on the friction factor and the

heat transfer coefficient is negligible
I, = constant

Fully developed
laminar flow



Laminar Flow in Noncircular Tubhes

alb Nusselt Number Friction Factor
Tube Geometry or®® | T, = Const. | g;= Const. f
Circle — 3.66 4.36 64.00/Re
Rectangle alb
1 2.98 3.61 56.92/Re
2 3.39 412 62.20/Re
T 3 3.96 4.79 68.36/Re
b 4 4.44 5.33 72.92/Re
6 5.14 6.05 78.80/Re
[——a—] 8 5.60 6.49 82.32/Re
o0 7.54 8.24 96.00/Re
Ellipse alb
1 3.66 4.36 64.00/Re
2 3.74 4.56 67.28/Re
4 3.79 4 88 72.96/Re
e 8 3.72 5.09 76.60/Re
T 16 3.65 5.18 78.16/Re
Triangle 3
10° 1.61 2.45 50.80/Re
A 30° 2.26 2.91 52.28/Re
b60* 2.47 3.11 53.32/Re
ﬁ* 90" 2.34 2.98 52.60/Re
' 120° 2.00 2.68 50.96/Re




Convection correlations for developing laminar flow in entrance region

» For a circular tube of length L subjected to constant surface temperature, the
average Nusselt number for the thermal entrance region is:

0.065 (D/L) Re Pr

Nu = 3.66 + | |
L T 1 0.04[(D/L) Re Pr

» Nusselt number is larger at the entrance region, and it approaches asymptotically
to the fully developed value of 3.66 as L— oo

» When the difference between the surface and the fluid temperatures is large, it
may be necessary to account for the variation of viscosity with temperature

» The average Nusselt number for developing laminar flow in a circular tube in that
case can be determined as:

Nu = 1.86( - ™

‘Re Pr [)')1--’3 ( Wy )0.14

» All properties are evaluated at the bulk mean fluid temperature, except for p,
which is evaluated at the surface temperature



Turbulent flow in the tubes

» Turbulent flow is commonly utilized in practice because of the higher heat transfer
coefficients associated with it. Most correlations for the friction and heat transfer
coefficients in turbulent flow are based on experimental studies because of the
difficulty in dealing with turbulent flow theoretically

» For smooth tubes, the friction factor in turbulent flow can be determined from the
explicit first Petukhov equation:

7=1(0.790 InRe — 1.64)7 10* < Re < 10°

» Once the friction factor is available, this equation can be used conveniently to
evaluate the Nusselt number for both smooth and rough tubes

Nu = 0.125 fRePr!

» For fully developed turbulent flow in smooth tubes, a simple relation for the
Nusselt number can be obtained by substituting the simple power law relation
f =0.184 Re %2 for the friction factor in the above equation:

0.7 =< Pr < 160
Re > 10,000

Nu = 0.023 Re?® Prl/3

Contd----



Turbulent flow in the tubes

Nu = 0.023 Re%® Pr”

where n = 0.4 for heating and 0.3 for cooling of the fluid flowing through the
tube. This equation is known as the Dittus—Boelter equation

» The fluid properties are evaluated at the bulk mean fluid temperature T, =(T,+ T,)/2

» When the temperature difference between the fluid and the wall is very large, it
may be necessary to use a correction factor to account for the different viscosities
near the wall and at the tube center

» Gnielinski’s equation should be preferred in calculations because it greatly

eliminate error . Again properties should be evaluated at the bulk mean fluid
temperature

__ (f/8)(Re — 1000) Pr 0.5 =Pr =2000
U= 1 + 127(f8){}i (Prl-"ﬂ — 1) 3 X 1 03 < Re<5 X 106

» The relations above are not very sensitive to the thermal conditions at the tube
surfaces and can be used for both T .= constant and g, = constant cases



Turbulent flow in the tubes — Role of rough surfaces

» Any irregularity or roughness on the surface disturbs the laminar sublayer, and
affects the flow. Therefore, unlike laminar flow, the friction factor and the
convection coefficient in turbulent flow are strong functions of surface
roughness

» The friction factor in fully developed turbulent flow depends on the Reynolds
number and the relative roughness /D and is given by Colebrook implicit
equation:

1 &/D 251

—— = —2.0log |5

+
Vf 3.7 Re

(turbulent flow)

Standard sizes for Schedule 40
steel pipes Relative Friction
Nominal  Actual Inside Roughness, Factor,
Size, in. Diameter, in. e/l f
P 0.269
% 0302 0.0* 0.0119
3 0.493 0.00001 0.0119
% 0.622 0.0001 0.0134
% 0.824 0.0005 0.0172
» e 0.001 0.0199
5 2 067 0.005 0.0305
2% 2.469 0.01 0.0380
3 3.068 0.05 0.0716
5 5.047
10 10.02 *Smooth surface. All values are for Re = 1068,




Turbulent flow in the tubes — Role of rough surfaces

Commercially available pipes differ from those used in
the experiments in that the roughness of pipes in the
market is not uniform, and it is difficult to give a precise
description of it.

The relative roughness of pipes may increase with use
as a result of corrosion, scale buildup, and
precipitation. As a result, the friction factor may
increase by a factor of 5 to 10

A simplified explicit equation for f is given by:

1.11

l__%—l.%log

yf Re

62, (22
.

In turbulent flow, wall roughness increases the heat
transfer coefficient h by a factor of 2 or more

Equivalent roughness values for

new commercial pipes”

Roughness, &

Material ft mm
Glass, plastic 0 (smooth)
Concrete 0.003-0.03 0.9-9
Wood stave  0.0016 0.5
Rubber,

smoothed  0.000032 0.01
Copper or

brass tubing 0.000005 0.0015
Cast iron 0.00085 0.26
Galvanized

iron 0.0005 0.15
Wrought iron  0.00015 0.046
Stainless steel 0.000007 0.002
Commercial

steel 0.00015 0.045

*The uncertainty in these values can be as much
as =60 percent.



Turbulent Flow in Noncircular Tubes

» The velocity and temperature profiles in turbulent flow are nearly straight lines in
the core region, and any significant velocity and temperature gradients occur in the
viscous sublayer

» Despite the small thickness of laminar sublayer (usually much less than 1 percent of
the pipe diameter), the characteristics of the flow in this layer are very important
since they set the stage for flow in the rest of the pipe

» Consequently, the turbulent flow relations given above for circular tubes can also be
used for noncircular tubes with reasonable accuracy by replacing the diameter D in
the evaluation of the Reynolds number by the hydraulic diameter, D,

44

I J_;I; = } )

—— - -
0 :r Turbulent layer
¥ Overlap layer
N

Laminar sublayer




Flow through Tube Annulus

» Some simple heat transfer equipment consist of two concentric tubes, and are called
double-tube heat exchangers

» In these devices, one fluid flows through the tube while the other flows through the
annular space. The governing differential equations for both flows are identical

» Consider a concentric annulus of inner diameter D, and outer diameter D,. The
hydraulic diameter of annulus is:

44, 4m(D:— D}/4

), = = =D — D,
Dh=" w(D, + D, Do = D,
Tube
i
AT SR
I
D: ii, I; ‘D{}
Ay R\ N
Y

Annulus



Flow through Tube Annulus

Nusselt number for fully developed
laminar flow in an annulus with
one surface isothermal and the

other adiabatic

» Annular flow is associated with two Nusselt
numbers—Nu; on the inner tube surface

and Nu, on the outer tube surface—since it

may involve heat transfer on both surfaces D./D, Nu; Nu,
Nu, = and Nu, = — 0.05 17.46  4.06
k k 0.10 1156  4.11

» The Nusselt numbers for fully developed 0.25 7.37 4.23
laminar flow with one surface isothermal 0.50 574 443
and the other adiabatic are given as: :> 1.00 486  4.86

» For fully developed turbulent flow, the inner and outer convection coefficients are
approximately equal to each other, and the tube annulus can be treated as a
noncircular duct with a hydraulic diameter of D, =D, - D..

» The Nusselt number in this case can be determined from a suitable turbulent flow

relation such as the Gnielinski's equation

~ (f/8)(Re — 1000) Pr ("0.5 < Pr = 2000 )
T+ 127(8)05 (P2 — 1) 3 X 10°<Re<5 X 10°
» To improve the accuracy of Nusselt 'D,\ %16 o
. . F, =0.86 (—) (outer wall adiabatic)
numbers obtained from these relations I:> D,
. /D.\ 016
for annular flow, Petykhov and Roizen F. =086 ([TI) (inner wall adiabatic)
recommended correction factors as: o,
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Natural Convection - Introduction

»The temperature of the air adjacent to the egg is higher, and thus its density is
lower, since at constant pressure the density of a gas is inversely proportional to its
temperature

»The motion that results from the continual replacement of the heated air in the
vicinity of the egg by the cooler air nearby is called a natural convection current

»Natural convection is just as effective in the heating of cold surfaces in a warmer
environment as it is in the cooling of hot surfaces in a cooler environment

»In a gravitational field, there is a net force that pushes upward a light fluid placed
in a heavier fluid. This upward force is termed as buoyancy

Warm

=5 WD/
W

/i/: ;{\ \ \IL trIa-:lesaffcx“ /z
Y M com W
| i SODA l 1




Natural Convection — Importance of Buoyancy

»Without buoyancy, heat transfer between a hot (or cold) surface and the fluid
surrounding it would be by conduction instead of by natural convection

>In natural convection heat transfer studies, the primary
variable is temperature, and it is desirable to express the
net buoyancy force in terms of temperature differences

»Volume expansion coefficient [, represents variation of
density with temperature at constant pressure

o L L

P=5 (aT)P o a7), R
where p is the density and T is the temperature of the
quiescent fluid away from the surface

Pemz—p = = (at constant P)

P — Pp=pB(T — 1) (at constant P)

E
20°C
100 kPa

1 kg

—F——

(a) A substance with a large B

£E W
20°C
100 kPa

1 kg

100 kPa
1 kg

(b) A substance with a small B

A large B value of for a fluid means a large change in density with temperature, and
that the product PBAT represents the fraction of volume change of a fluid that
corresponds to a temperature change AT at constant pressure




Natural Convection — Importance of Buoyancy

» The larger the temperature difference between the fluid adjacent to a hot (or cold)
surface and the fluid away from it, the larger the buoyancy force and the stronger
the natural convection currents, and thus the higher the heat transfer rate

»The magnitude of the natural convection heat transfer between a surface and a fluid
is directly related to the flow rate of the fluid. The flow rate in natural convection is
established by the dynamic balance of buoyancy and friction

»The friction force increases as more and more
solid surfaces are introduced, seriously disrupting
the fluid flow and heat transfer

»Most heat transfer correlations in natural
convection are based on experimental
measurements using instrument Mach — Zehnder
interferometer which gives a plot of isotherms in the
vicinity of a surface

|/

(a) Lamuinar flow (b) Turbulent flow
Isotherms in natural convection over
a hot plate in air



Natural Convection — Equation of motion

Here we derive the equation of motion that governs the natural convection flow in

laminar boundary layer

Continuity equation in natural convection:

il Jv
Ty =0
ox  dy

Energy equation in natural convection:

pC (1/(,)—T AP (,)T) _ /c(()-T+ ()-T) u=10

P\"" ox av X 01~

The conservation of mass and energy equations in natural
convection are same as that of forced convection.
However the momentum equation needs to be modified
to incorporate buoyancy

Consider a vertical hot flat plate immersed in a
quiescent fluid body. We assume the natural convection
flow to be steady, laminar, two-dimensional, and the
fluid to be Newtonian with constant properties
including density x

N
\

_ \ Temperature

nay
T,

00

4 Veloeity

profile
(1

Boundary
layer
Stationary
T, fluid
/ at T,

1)

y Contd.---



Natural Convection — Equation of motion

»The density difference p - p.. is to be considered since it is

this density difference between the inside and the outside of s \

the boundary layer that gives rise to buoyancy force and
sustains flow. (This is known as the Boussinesq approximation.)

»Gravity acts in the -x direction. As the flow is steady and
two-dimensional, the x- and y-components of velocity within
boundary layer are u = u(x, y) and v = v(x, y), respectively

u=1~0
»Velocity and temperature profiles for natural convection
over a vertical hot plate shows fluid velocity is zero at the
outer edge of velocity boundary layer while temperature
gradually decreases to T_,

»In case of cold surfaces, the shape of the velocity and
temperature profiles remains the same but their direction is
reversed

_ \ Temperature

nay
T,

o

4 Veloeity

profile
(1

Boundary
layer
Stationary
T, fluid
/ at T,




Natural Convection — Equation of motion derivation

Consider a differential volume element of height dx, length Pa oP
dy, and unit depth in the z-direction (normal to the paper)

. . r ------- I
Newton’s second law of motion for this control volume : dy
I

I
. Ly I
can be expressed as: | &y - a, = F, Eq.1 4 'T L
L . . . | I W
The acceleration in the x-direction is obtained by taking I l l "o y
. . T R | I
the total differential of u(x, y) and &m = p(dx - dv - 1) o A A 5
du oudx oudy ol o
O P ol e MM PSSP e YN NN i P
“Tdr T ox dr " dv dt “ox v Eq.2 T

The forces acting on the differential volume element Forces acting on a differential control
in the vertical direction are the pressure forces and volume in the natural convection
shear forces (the normal stresses on top and bottom boundary layer over a vertical flat plate
are small and are ignored

F. = f::—;r(f\J((h 1= (%}(h :](‘(/‘\" 1) — pgldx-dy- 1)

([ 0*u QP “ o
- — = )q)(('/.\'-(.:\" 1)
( b h= ox PS ' ‘

Contd.---



Natural Convection — Equation of motion derivation

dP
F .= (’{'—Tu’\')(n’.\'- L= (‘('.)—P(/A\' ‘)((/1'- 1) — pgldx - dy- 1) l P+§dr
: \ OV \ OX { - = '
/Al , o ——————
~ (w222 el dy- 1) Eq.3 ILJh@_..E
. T : dx IT T +a_1' d.},-
Since T = p(du/av) l: l w : Jy
Substituting Eqgs. 2 and 3 into Eq. 1 and dividing by p. | 1 I
dx. dy. 1 gives the conservation of momentum in the x- phmity S B
direction as : T P
[ du GIA ) i i i
e t ey TR A PR Ead o e e convection

boundary layer over a vertical flat plate

The x-momentum equation in the quiescent fluid
outside the boundary layer can be obtained from — dF, — —p.o| EQ5
the relation above as a special case by setting u = 0. dx =

Velocity component in y direction, the force balance in this direction gives: [9P/9yv = 0

v=u  gviax = dv/dy = 0 P = P(x) = ch(?&‘)

L . ﬂ) d%u

Contd.---




Natural Convection — Equation of motion derivation

ox

p(uﬂ—l— 1'ﬂ) =R

ay

%
OB i —
P (P — pg

Eq.6

»The last term on R.H.S represents the net upward force per unit volume of the fluid
(the difference between the buoyant force and the fluid weight). This is the force that

initiates and sustains convection currents.

But we know that

Pz P

= pB(T — T..) (at constant P)

Eq.7

On substituting Eq.7 in R.H.S of Eq.6 and dividing entire Eq.6 by p we get:

ot
s
ax

du

1"— —

ay

.’2
1'(_—@ o T—1.)

()_\ M

Eq.8

The set of three partial differential equations (the continuity, momentum, and the
energy equations) that govern natural convection flow over vertical isothermal
plates can be reduced to a set of two ordinary nonlinear differential equations by

the introduction of a similarity variable




GRASHOF NUMBER

The governing equations of natural convection and the boundary conditions can be
nondimensionalized by dividing all dependent and independent variables by
suitable constant quantities: all lengths by a characteristic length L_, all velocities

at arbitrary velocity

i =i 1'*—L .. y == and il ¥
L, L, { : e~
The non dimensional form of free convection —
equation is given by: surface
Lo’ o au™  |gB(T, — T)L2| T* 1 o™ ;' ?gzzon
U = ¥ - = - + — :
ox’ (').1' ; T RC}_ ReL d_\‘>l qu
The dimensionless parameter in the brackets represents the Warm
natural convection effects, and is called the Grashof number fluid
Gr, It represents the ratio of buoyancy force to viscous
forces acting on the fluid.
Buoyancy

force

Cold
fluid



GRASHOF NUMBER

gB(T; — L]

GIL = . Hot
1-«_
o ' - surface
g = gravitational acceleration. m/s- /
B = coefficient of volume expansion. 1/K (B = 1/T for ideal gases) B Friction
T, = temperature of the surface. 'C ]| force Cold
[. = temperature of the fluid sufficiently far from the surface. "C fluid
L. = characteristic length of the geometry. m
v = kinematic viscosity of the fluid. m%/s 41520
2 A |fluid
The role played by the Reynolds number in forced convection is played by
the Grashof number in natural convection and it provides a criterion to =
. . . . . uoyancy
determine whether a flow is laminar or turbulent in natural convection foyrc 5

> For vertical plates, for example, the critical Grashof number is observed to be about 10°

»When a surface is subjected to external flow, the problem involves both natural and
forced convection. The relative importance of each mode of heat transfer is
determined by the value of the coefficient Gr,/Re?,

»>Natural convection effects are negligible if Gr /Re?, << 1

> Forced convection effects are negligible if Gr,/Re?, >> 1

»>Both free and forced convection effects are dominant if Gr /Re?, ~~ 1




Natural Convection over surfaces

»Natural convection heat transfer on a surface depends on the geometry of the
surface as well as its orientation, variation of temperature on the surface, thermo

physical properties of the fluid

»The complexities of fluid motion make it very difficult to obtain simple analytical
relations for heat transfer by solving the governing equations of motion and energy

»With the exception of some simple cases, heat transfer relations in natural

convection are based on experimental studies

The simple empirical correlations for the average Nusselt number, Nu in natural

convection are of the form:

o — h
Nu =—
Where Rayleigh number
is the product of Grashof
and Prandtl numbers

. oB(T. — T.)L:
Rﬂi - {_Tl“,: P]. = - S

12

= C(Gr; Pr)" = C Ray

Pr

Constant
coefficient
l Constant
Nu = CRa? exponent

/A

Nusselt Rayleigh
number number

The values of the constants C and n depend on the geometry of the surface and the

flow regime, which is characterized by the range of the Rayleigch number




Empirical correlations for the average Nusselt number for natural convection over surfaces

Characteristic
Geometry length L. Range of Ra Nu
Vertical plate T 104-10°2 Nu = 0.59Ra}*
T, 10°-101%2 Nu = 0.1Ra}?
L 7 _ 0.387Ra}/® 12
L Entire range Nu = { 0.825 + (1 + (0.492/Pn)epa7
7]
Al (complex but more accurate)

Use vertical plate equations for the upper
surface of a cold plate and the lower
/ surface of a hot plate

Replace g by g cosb for Ra < 10°

Inclined plate

Heat transfer on an inclined plate is complex due to (p}f;te

resolution of forces on an inclined plane which are
bound to alter boundary layer formation

Tu
\/ Boundary

Rayleigh number relation is replaced by g cos6

T

Nusselt number can be determined from the
vertical plate relations provided that g in the | ‘
e X
for 68 < 60

Contd.---




Empirical correlations for the average Nusselt number for natural convection over surfaces

Geometry

Characteristic
length L,

Range of Ra

Nu

Horiontal plate

(Surface area 4 and perimeter p)
(a) Upper surface of a hot plate
(or lower surface of a cold plate)

Hot surface T,

/

[
FET T T T IS,

(b) Lower surface of a hot plate
(or upper surface of a cold plate)

LI EE LTI LIS LES SIS

T N1

5

Hot surface

104-107
107-10!

10°-10%

Nu = 0.54Ra}*
Nu = 0.15Ra}?

Nu = 0.27Ra}*

The rate of heat transfer to or from a horizontal
surface depends on whether the surface is facing

upward or downward

The characteristic length for horizontal surfaces is

calculated from:

Natural
convection
currents

\ YR f
L

\E o > e/
N7 NS

Natural /

convection
currents

Hot
plate Contd.---



Empirical correlations for the average Nusselt number for natural convection over surfaces

Characteristic

layer flow

Geometry length L, Range of Ra Nu
Vertical cylinder o T, A vertical cylinder can be treated as a
| B . / vertical plate when
L
L
=L
i |
Horizontal cylinder . 5 " 512 " {0 . 0.387Ral® 2
5 = “Z17° T+ 0.559/PnEE
1
| ——
'
: 0.589Ra}*
Sphere Ra, = 10! Nu=2 0
- YT 2T+ (0.469/PER
D (Pr=0.7)
Boundary T T

The boundary layer over a hot horizontal cylinder start to develop at the
bottom, increasing in thickness along the circumference, and forming a
rising. Local Nu is highest at the bottom and lowest at the top of cylinder.
The opposite is true for cold horizontal cylinder in the warmer medium
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Boiling - Introduction

»Boiling is a liquid-to-vapor phase change process just like evaporation, but there are
significant differences between the two

» Evaporation occurs at the liquid—vapor interface when the vapor pressure is less
than the saturation pressure of the liquid at a given temperature and does not
involve bubble formation or bubble motion

»Boiling, occurs at the solid—liquid interface when a liquid is brought into contact
with a surface maintained at a temperature T, sufficiently above the saturation
temperature T, of the liquid. Boiling is a complicated phenomenon because of the
large number of variables involved in the process and the complex fluid motion
patterns caused by the bubble formation and growth

Boiling heat flux from a solid surface to the fluid is expressed as:

Gioiing = ATy — Tagt) = AT e (W/m?)

Evaporation P=1atm

Water
Tw = 100°C




Boiling - Introduction

»h;, represents the energy absorbed as a unit mass of liquid vaporizes at a specified
temperature or pressure and is the primary quantity of energy during boiling heat
transfer

»Bubbles owe their existence to the surface-tension at the liquid—vapor interface due
to the attraction force on molecules at the interface toward the liquid phase

»The boiling processes in practice do not occur under equilibrium conditions, and the
bubbles are generally not in thermodynamic equilibrium with the surrounding liquid

»The pressure difference between the liquid and the vapor is balanced by the surface
tension at the interface

» The temperature difference between the vapor in a bubble and the surrounding liquid
is the driving force for heat transfer between the two phases




Boiling - Classification

»Boiling is classified as pool boiling or flow boiling, depending on the presence of
bulk fluid motion

»Boiling is called pool boiling in the absence of bulk fluid flow and flow boiling (or
forced convection boiling) in the presence of it

»In pool boiling any motion of fluid is due to natural convection currents while in flow
boiling fluid is forced by means of an external device like pump

»Pool and flow boiling are further classified as subcooled boiling or saturated boiling,
depending on the bulk liquid temperature.

»Boiling is said to be subcooled (or local) when the temperature of the main body of
the liquid is below the saturation temperature T,,, and saturated (or bulk) when the

temperature of the liquid is equal to T,

P=1atm P=1atm
= = Subcooled 80°C Saturated 100°C |
water water
\ J —| A= (g , 1or°c
= o LTI T Teueete] [ 11111

EHIRIE I N Heating Heating
Heating

Heating (a) Subcooled boiling (b) Saturated boiling

(a) Pool boiling (b) Flow boiling




Boiling regimes and boiling curve

»Boiling takes different forms, depending on the value of the excess temperature AT,

»The general shape of the boiling curve remains the same for different fluids

excess

»The specific shape of the curve depends on the fluid—heating surface material
combination and the fluid pressure, but it is practically independent of the geometry of

the heating surface

—-—
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Natural convection Nucleate Transition Film
boiling boiling boiling boiling
T T T T
 — | : |
Bubbles! I Ma?"!‘“‘lm I
I-:o]]apseI I (critica } I
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5
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104 ubbles . ..
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Typical boiling curve of water at 1 atm pressure

Heating Heating
(a) Natural convection  (b) Nucleate boiling
boiling
~~Vapor pockets ~Vapor film ,
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Heating Heating
(¢) Transition boiling (d) Film boiling
Contd.-----



Boiling regimes and boiling curve

Natural Convection Boiling (to Point A on the Boiling Curve)

»A pure substance at a specified pressure starts boiling when it reaches the
saturation temperature at that pressure. But in practice bubble formation will happen

only after a certain superheat is provided

» The fluid motion in this mode of boiling is governed by natural convection currents,

and heat transfer from the heating surface to the fluid is by natural convection

Nucleate Boiling (between Points A and C)

»The first bubbles start forming at point A of the boiling curve at various
preferential sites on the heating surface. The bubbles form at an increasing number

of nucleation sites as we move along the boiling curve toward point C

»In region A-B, isolated bubbles are formed at various preferential nucleation sites
on the heated surface. But these bubbles are dissipated in the liquid shortly after

they separate from the surface

»In region B—C, the heater temperature is further increased, bubbles form at such
great rates at such a large number of nucleation sites that they form numerous

continuous columns of vapor in the liquid




Boiling regimes and boiling curve

» At large values of AT, ..., the rate of evaporation at the heater surface reaches such
high values that a large fraction of the heater surface is covered by bubbles, making it
difficult for the liquid to reach the heater surface and wet it

»The heat flux increases at a lower rate with increasing AT,,.., and reaches a

maximum at point C. The heat flux at this point is called critical heat flux , ¢

»Nucleate boiling is the most desirable boiling regime in practice because high heat
transfer rates can be achieved in this regime with relatively small values of AT,
typically under 30°C for water

xcess’

Transition Boiling (between Points C and D on the Boiling Curve)

»As the AT, ... is increased past point C, the heat flux decreases. A large fraction of
the heater surface is covered by a vapor film, which acts as an insulation due to the

low thermal conductivity of the vapor relative to that of the liquid

»Operation in the transition boiling regime, which is also called the unstable film
boiling regime, is avoided in practice



Boiling regimes and boiling curve

Film Boiling (beyond Point D)

»In this region the heater surface is completely covered by a continuous stable vapor
film. The presence of a vapor film between the heater surface and the liquid is
responsible for the low heat transfer rates in the film boiling region

»The heat transfer rate increases with increasing excess temperature as a result of
heat transfer from the heated surface to the liquid through the vapor film by radiation,
which becomes significant at high temperatures

(;1 '
w
5
m-

Qax Dy — CONStant

|i11 femperanure |

y | - IE Point C on the boiling curve is also called the
| | burnout point, and the heat flux at this point
| o the burnout heat flux
| L
;r-Sudden Jump : —i

|
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Various boiling regimes during boiling of methanol on a horizontal
1-cm-diameter steam-heated copper tube
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(a) nucleate boiling, (b) transition boiling, and (c) film boiling



Heat transfer correlations in Pool boiling

»Boiling regimes discussed above differ considerably in their character, and thus
different heat transfer relations need to be used for different boiling regimes

»In the natural convection boiling regime, boiling is governed by natural convection
currents, and heat transfer rates in this case can be determined accurately using natural
convection relations

Nucleate Boiling

In the nucleate boiling regime, the rate of heat transfer strongly depends on the nature
of nucleation (the number of active nucleation sites on the surface, the rate of bubble
formation at each site, etc.), which is difficult to predict. The type and condition of
heated surface also affect heat transfer

Empirical correlation proposed by Rohsenow is widely used in nucleation boiling regime:

o [ )] G — T P
4 nucleate — M4 / 7_,‘;9 o C.sf hfg Prill




Heat transfer correlations in Pool boiling

. glpr — py) |* | G5 — Taa)
G nucleate — M hfg o

Cy i Pr]

i

(jnucleate
M =

B =
g=

P =

Py =

>3
|

U )
=g
|l

n=

= nucleate boiling heat flux, W/m?*

viscosity of the liquid, kg/m - s
enthalpy of vaporization, J/’kg
gravitational acceleration, m/s’
density of the liquid, kg/m’
density of the vapor, kg/m’

surface tension of liquid—vapor interface, N/m
0 C

specific heat of the liquid, J/kg -

surface temperature of the heater, °C
saturation temperature of the fluid, °C

experimental constant that depends on surface—fluid combination

Prandt]l number of the liquid

experimental constant that depends on the fluid

Cvalues for various fluid—surface combinations can be used for any geometry. It is
found that the rate of heat transfer during nucleate boiling is essentially

independent of the geometry and orientation of the heated surface



Heat transfer correlations in Pool boiling

Peak heat flux:

In the design of boiling heat transfer equipment, it is extremely important for the
designer to have a knowledge of the maximum heat flux in order to avoid the danger of
burnout. The maximum (or critical) heat flux in nucleate pool boiling was determined

theoretically

(jmax = C-:.r /’fg[UgPE (P: — Pv‘)]l »
p, increases but and hg, decrease with increasing pressure, and thus the change in
g max with pressure depends on which effect dominates

(dimensionless parameter L* = Llg(p, — p,)o]?) is to be calculated for estimating C_,

Charac.

Dimension
Heater Geometry Ce, of Heater, L Range of L*
Large horizontal flat heater 0.149 Width or diameter L% =27
Small horizontal flat heater! 18.9K, Width or diameter 9 < [* < 20
Large horizontal cylinder 12 Radius (Y>> 1.2
Small horizontal cylinder 0. 121% 025 Radius 0.15<1*<1.2
Large sphere 0.11 Radius L* > 4.26
Small sphere Q. 227 L¥95 Radius Q.15<I*<4.26




Heat transfer correlations in Pool boiling

Minimum Heat Flux

»Minimum heat flux, which occurs at the Leidenfrost point, is of practical interest
since it represents the lower limit for the heat flux in the film boiling regime

; q4
r—— Film
Gmin = 0.09p, N1, (p; + p,)> Critical heat boiling
i - flux relation relations
. re Nucleate \; \
Film Boiling boiling
. . _ relations
The heat flux for film boiling on a horizontal W
cylinder or sphere of diameter D is given by:

k, is the thermal conductivity of the vapor in Natural
convection

W/m - °C . _ ]0.62 for horizontal cylinders relations
fim = 10.67 for spheres

Minimum
heat flux
relation

Y

gl p, (pr — p)lig + 0.4C,, (T, — Ty |4 ST
‘I.'ﬂ:{_rl.ﬂl - = N I5_T33}
q fils fil w, D(T; — Ty) { |

Vapor properties are evaluated at the film temperature, given as T,= (T, + T,,)/2, the
average temperature of the vapor film. The liquid properties and h,, are to be evaluated
at the saturation temperature at the specified pressure




Heat transfer correlations in Pool boiling

» At high surface temperatures (typically above 300°C), heat transfer across the
vapor film by radiation becomes significant and needs to be considered

» Treating the vapor film as a transparent medium sandwiched between two
large parallel plates and approximating the liquid as a blackbody, radiation heat
transfer can be determined from:

“rjmd = EU {.-Is;‘ I'{T}

»In case of film boiling, radiation and convection mechanisms adversely affect
each other:

-

. . a2,
If fi’md < éﬁ]m.'- Qtotal = fitm ™ E‘YIad

Rough surfaces enhances nucleation sites and increases boiling heat transfer

P=1atm

Liquid

Nucleation sites for vapor

rad
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Condensation - Introduction

»Condensation occurs when the temperature of a vapor is reduced below its
saturation temperature T_, It can also occur on the free surface of a liquid or a gas
when the liquid or the gas to which the vapor is exposed is below T,

»In film condensation, the condensate wets the surface and forms a liquid film on
the surface that slides down under the influence of gravity

»In dropwise condensation, the condensed vapor forms droplets on the surface
instead of a continuous film, and the surface is covered by countless droplets of
varying diameters

»Heat transfer rates are more than 10 times larger than those associated with film
condensation can be achieved with dropwise condensation

SOCC /

(a) Film (b) Dropwise
condensation condensation

Liquid film




Film condensation on vertical plate

»The thickness of the film increases in the flow
direction x because of continued condensation at
the liquid—vapor interface

»hg, (the latent heat of vaporization) is released
during condensation and is transferred through the
film to the plate surface at temperature T,

»Velocity of the condensate at the wall is zero
because of the “no-slip” condition and reaches a
maximum at the liquid—vapor interface

»The temperature of the condensate is T, at the
interface and decreases gradually to T, at the wall

»Heat transfer in condensation depends on
whether the condensate flow is laminar or
turbulent

Cold
plate

N

0
A

X

}P

/

g «——

m(x) Vapor. V'

Liquid-vapor
mnterface

Veloeity
Vo) profile

Liquid. /



Reynolds number — flow regime for condensation

:Dh p V) _ 44.pV, _ 4p, V0 _ Am
H PHi M Py

Eq.1

D, = 4A_/p = 46 = hydraulic diameter of the condensate flow
p = wetted perimeter of the condensate
A_= p= wetted perimeter X film thickness, m?

C

p, = density of the liquid, kg/m3
Y, = viscosity of the liquid, kg/m - s

p=2L

4,=2L5

44
p

(a) Vertical plate (b) Vertical cylinder (¢) Horizontal cylinder



Flow regime in condensation

If the condensate is cooled from superheated vapor state at T, to T, then
obviously heat transfer will be more than hg, and is given by:

'JTFJ% - hfg + 068(;14' (Tsar —I)+ (-p1 (Tu — Ta)

Rate of heat transfer can be expressed as:
(0o = Rd(T- = TJ= mhg Eq.2
By substituting Eq.2 in Eq.1

4dem 44 T, — T))
CopwmhE - pwh
»The temperature of the liquid film varies
from T, on the liquid—vapor interface to T, at
the wall surface. Properties of the liquid
should be evaluated at the film temperature T;
= (T + T.)/2,

sat

Re

»hg,, should be evaluated at T, since it is not
affected by the subcooling of the liquid

Re = O \
Laminar
(wave-free)
Re= 30 —
Laminar
(wavy)
— Re= 1800 —%
Turbulent

»The flow of liquid film exhibits different regimes, depending on the value of the

Reynolds number




Nusselt theory on film condensation

Consider a vertical plate of height L and width b maintained at a | 6—y |
constant temperature T, that is exposed to vapor at the

saturation temperature T, T.< T,, dx
Shear force ‘L
du .
Assumptions in the derivation u‘ld_},(bd“) Buoyancy force
— | || pug@-») av)
»Plate and the vapor are maintained at constant Weight

temperatures of T, and T, respectively, and the p,g(@—y) (bdx)

temperature across the liquid film varies linearly

0o VY
»Heat transfer across the liquid film is by pure £,<
conduction L5
»The velocity of the vapor is low (or zero) so }
. '\-
that it exerts no drag on the condensate (no T
viscous shear on the liquid—vapor interface) o 7" Isstizad
. . e velocity
»The flow of the condensate is laminar and  aty=0 pl.oﬁ;?
the properties of the liquid are constant L\ N1 vapor drag
»The acceleration of the condensate layer is l 7 Idealized
ioi SLe temperature
negligible 1 e
\T
L. d 1 sat
| Linear

Contd.---



Nusselt theory on film condensation

since the acceleration of the fluid is zero 6y
f the f L272
I
2 F.=ma, =0 dx
Shear force _L
- H % (bdx) Buoyancy force
K, downward & — H, upward T i

' P,g(6 —y) (bdx)

7 XTI | o o " £ Weight
Weight = Viscous shear force + Buoyancy force pg@ ) (bdx)
du , |
p;2(d — v)(bdx) = |.L]d—r (bdx) + p,2(d& — v)(bdx) Eq.4 ¢ ¥ Yy
o y |
Cancelling (bdx) throughout Eq.4 gives xy
4_8 &
| | 1
du _ (pr — p,)g® — ) dx
I e | El Idealized
. Y = 0 ca I?C
Integrating from y = 0 where u = 0 (because of i1 velocity
. .y e _ S S rofil
the no-slip boundary condition) to y = y where Yy Y ‘,_lfo ) )
u =u(y) gives: \ No vapor drag
— ' 2) dealized
(Pr — P)E y l r i !
V) = D) — — S—fw temperature
(,1' ) I ..‘ 0 2 | Eq.5 ¢ profile
\ 7
Yiaaidil sat
| Linear

Contd.---



Nusselt theory on film condensation

The mass flow rate of the condensate at a location x, o—y
: . [
where the boundary layer thickness 6 is:

e "0
m(x) = | pu(y)yd4d = J
JA

y= 5 (b

Buoyancy force

P; [I(J ) bd)' EQ.6  Shear force ]
0
' p,g(0 —y) (bdx)

Substituting the u(y) relation from Eqg.5 in Eq.6

Weight
: p,g(6 —y) (bdx)
. gbp/(p; — p,)O° Eq.7
m(x) = = 0 3
I /Y
whose derivative with respect to x is: x"__a
- - 1
dm  gbp{p; — p,)0" dd Eq.8 &
dx v dx !
V=0 ‘;.I Idealigcd
which represents the rate of condensation of s y=0—1" veloeity

profile

\J

vapor over a vertical distance dx. The rate of B
heat transfer from the vapor to the plate
through the liquid film is simply equal to the l T Idealized

. S+ temperature
heat released as the vapor is condensed F pfoﬁl <

1.

. sat
A Liquid. / T i

No vapor drag

g

Contd.---



Nusselt theory on film condensation

The rate of heat transfer from the vapor to the plate
through the liquid film is simply equal to the heat
released as the vapor is condensed is:

Tsar o Ts N
O

@ _ Eq.9

a’Q = h_,gdn'z = k; (bdx)

!
dx
Shear force
du (bdx) —1—
u‘ld_}, % Buoyancy force

Weight ' P, \'g(5 —y) (bdx)

P1g(5 —y) (bdx)

0oV
4
dm kDT — I B xy
dx hfg 6 l 0
: dx
: T
Equating Eq.8 and Eq.9 y 7—! —
N velocity
A e =0 &
S3 dS = M ]‘I(Tsat Ts) ¢ 2 L profile
3 - ) e E .10 S N 7 R P
ap; (p] i pp)hfg q No vapor drag
- Idealized
l SLe temperature
2 profile
\T
. sat
A Liquid. / T i

Contd.---



Nusselt theory on film condensation

Integrating from x = 0 where 6 = O (the top of
the plate) to x = x where 6= 6(x), the liquid
film thickness at any location x is:

'HJ“I /"I(T.'\;at o Ts)-\.

O(x) = {

gp(p; — pv)hfg

-

Eq.11

The heat transfer rate from the vapor to the

plate at a location x is:

sat

=

(j.\' =1 7.\'( Tsat o Ts) = /"I

O

3
= ke 1
d()

h

o—y
—
f
dx
Shear force
U gy 5
H dv ¥ Buoyancy force

Weight I p,g(0 —y) (bdx)

PE (0 —y) (bdx)

V"
Xy
|
dx
V=0 ‘;’I Idealized
£ _ 0" velocity
_E 12a ) profile
q. Yvy
No vapor drag
T Idealized
l S_Le temperature
g % profile
—_ Tat
i Liquid. / T

Contd.---



Nusselt theory on film condensation

Inserting Eq.12 in Eq.11 the local heat transfer coefficient h, is

] [gm(p/ — p)g I /\T 4
7‘\' : b
4y (T — To)x

The average heat transfer coefficient over the entire plate is determined to be:

==L [ hdr=Sn_ . i {OP/ — p)h"’l‘s}u
P fave = L JO e 3 S L (.T.sat . Ts)L

Eq.13

The above expression does not take into account the effects of the
nonlinear temperature profile in the liquid film and the cooling of the liquid

below the saturation temperature. Both these effects can be accounted by
replacing hg, with h*

gpi(pr — PRI | E
Neer = 0.943 (T — T )L (W/m? - °C), 0 < Re < 30| Ea.14
/ sat s.




Other correlations for Condensation heat transfer

Heat transfer coefficient h . in terms of Re by substituting Eq.7 in Eq.1:

. \N1/3
POV . s 0 < Re <30
Boo = 147K Re™15 (ﬁ) : ;
V7 Py < P
Wavy laminar flow on vertical plates:
. B Re k, (g )” 30 < Re < 1800
vetwayy T ] 08 Re!'2 — 52\v?) ° p,<py

Re\'err. wavy 4.81 + : ( ) Y

L7 /zjfg V7

Turbulent flow on vertical plates:

" _ Re /; (g)” Re > 1800
vert. turbulent 8750 + 58 Pr—05 (Re(ms - 253) Vi ’ P, < P;

0.0690 Lk, Pr> (T, — T)) /g \ 13
Rt sttt = ( )

g ]7fg




Correlations for Condensation heat transfer for other geometries

Inclined plates:

(P — P)E [
Mg (-‘8 N

-‘ ‘: |
? Eq.5

u(y) =

The above equation developed for vertical plates can also
be used for laminar film condensation on the upper Inclined
surfaces of plates that are inclined by an angle from the plate
vertical, by replacing g in that equation by g cos9

.~ Condensate

Bicsiia =Pt (€05 O (laminar)

Vertical tubes:

; gp!'(P £ plf”’:':' ]‘-? i
Mo = 0.943 =
\ . Hl’(]—sm— TS)L

(W/m? - °C), 0 < Re < 30 Eq.14

The above equation for vertical plates can also be used to calculate the average heat
transfer coefficient for laminar film condensation on the outer surfaces of vertical tubes
provided that the tube diameter is large relative to the thickness of the liquid film

Contd.---



Correlations for Condensation heat transfer for other geometries

Horizontal tubes and spheres:

»Nusselt’s analysis of film condensation on vertical plates can also be extended to
horizontal tubes and spheres

»The average heat transfer coefficient for film condensation on the outer surfaces of a
horizontal tube is determined to be:

gp;(pr — p,) K|V T
(Wm--°C)  Eq.15

= B
Moz = 0.729 { AT = TOD

D is the diameter of the horizontal tube. Eq.15 can easily be modified for a sphere
by replacing the constant 0.729 by 0.815

A comparison of the heat transfer coefficient relations for a vertical tube of height
L and a horizontal tube of diameter D:

h

vert

— 1.29 (D)

/ Thoriz L .
3 — . . TEeQ — ") ( 4 —
/ Iyertical / Thorizontal £1VES L 1.29" D 2.9 11D

it is common practice to place the tubes in a condenser horizontally to maximize the
condensation heat transfer coefficient on the outer surfaces of the tubes

Contd.---



Other factors affecting heat transfer in film condensation

Effect of Vapor Velocity

I o IH

»When the vapor velocity is high, the vapor will “pull” the liquid at the interface along
since the vapor velocity at the interface must drop to the value of the liquid velocity

»|If the vapor flows downward this additional force will increase the average velocity
of the liquid and thus decrease the film thickness. This, in turn, will decrease the
thermal resistance of the liquid film and thus increase heat transfer. Upward vapor
flow has opposite effects

Vapor + Noncondensable gas

Presence of Noncondensable Gases in Condensers — 1

»Experimental studies show that the presence of
noncondensable gases in the vapor has a detrimental effect on .4
condensation heat transfer sirface ™

»Gas layer acts as a barrier between the vapor and the surface,
and makes it difficult for the vapor to reach the surface and
hence vapor has to diffuse first through noncondensable gas

before reaching the surface l
»Heat transfer in the presence of a noncondensable gas Gondensals
strongly depends on the nature of the vapor flow and the flow _

Velocity Noncondensable gas

* Vapor



Correlations for Condensation heat transfer for other geometries

Film condensation inside Horizontal tubes :

»Most condensation processes encountered in refrigeration and air-conditioning
applications, however, involve condensation on the inner surfaces of horizontal or

vertical tubes

»Heat transfer analysis of condensation inside tubes is complicated by the fact that it is
strongly influenced by the vapor velocity and the rate of liquid accumulation on the
walls of the tubes. The numerical expression for low vapor velocities is:

3

gpi(pr — po) ki 3 =
= D ("fg g ColTea — Tf))] Eq.16

Bigrema = 0.555

»Reynolds number of the vapor is to be evaluated at the tube inlet conditions using
the internal tube diameter as the characteristic length

'p, V., D - I_I,iq.u-icll

!

Ko = (B2 <50




Dropwise Condensation

»Dropwise condensation, characterized by countless droplets of varying diameters
on the condensing surface instead of a continuous liquid film, is one of the most
effective mechanisms of heat transfer, and extremely large heat transfer coefficients
can be achieved with this mechanism

»Small droplets that form at the nucleation sites on the surface grow as a result of
continued condensation, coalesce into large droplets, and slide down when they
reach a certain size, clearing the surface and exposing it to vapor

»There is no liguid film in this case to resist heat transfer. As a result, with dropwise
condensation, heat transfer coefficients can be achieved that are more than 10
times larger than those associated with film condensation

D s ol
el . . { . 0
e L ‘ » >
S RN L @ -

Dropwise condensation of steam on a vertical surface Contd.---



Dropwise Condensation

»The challenge in dropwise condensation is not to achieve it, but rather, to sustain it
for prolonged periods of time

»Dropwise condensation is achieved by adding a promoting chemical into the
vapor, treating the surface with a promoter chemical, or coating the surface with a
polymer such as Teflon or a noble metal

»Promoters used include various waxes and fatty acids such as oleic, stearic, and
linoic acids

Heat transfer correlations for dropwise condensation of steam on copper surfaces:

S

310 T.. > 100°C

3¢

_ |51.104 + 20447, 22°C < 7, < 100°C
1255.31 '

where T, is in °C and the heat transfer coefficient /14,y 18 iIn W/m? - °C
»High heat transfer coefficients achievable with dropwise condensation are of little
significance if the material of the condensing surface is not a good conductor like

copper or if the thermal resistance on the other side of the surface is too large
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What is heat exchanger?

Heat exchangers are devices that facilitate the exchange of heat between two fluids
that are at different temperatures while keeping them from mixing with each other

Heat exchangers are commonly used in practice in a wide range of applications,
from heating and air-conditioning systems in a household, to chemical processing
and power production in large plants

Heat transfer in a heat exchanger usually involves convection in each fluid and
conduction through the wall separating the two fluids

Heat exchangers are manufactured in a variety of types due to practical application
and therefore there are various classification of heat exchangers

A gas-to-liquid compact heat exchanger for a residential air-conditioning system



Classification of heat exchangers

» The simplest type of heat exchanger consists of two concentric pipes of
different diameters, as shown in Fig. called the double-pipe heat exchanger

» Two types of flow arrangement are possible in a double-pipe heat exchanger.
In parallel flow, both the hot and cold fluids enter the heat exchanger at the
same end and move in the same direction

» In counter flow, the hot and cold fluids enter the heat exchanger at opposite

ends and flow in opposite directions
T

Hot
n
— -

|
.

Cold Cold
in out

(a) Parallel flow (b) Counter flow



Classification of heat exchangers

» Heat exchanger, which is specifically designed to realize a large heat transfer
surface area per unit volume, is the compact heat exchanger

» The large surface area in compact heat exchangers is obtained by attaching
closely spaced thin plate or corrugated fins to the walls separating the two fluids

» Compact heat exchangers are commonly used in gas-to-gas and gas-to liquid (or
liguid-to-gas) heat exchangers to counteract the low heat transfer coefficient
associated with gas flow with increased surface area

» The ratio of the heat transfer surface area of a heat exchanger to its volume is
called the area density . A heat exchanger with 700 m?/m3 is classified as being
compact

A gas-to-liquid compact heat exchanger for a residential air-conditioning system



Classification of heat exchangers

» In compact heat exchangers, the two fluids usually move perpendicular to each
other, and such flow configuration is called cross-flow. The cross-flow is further
classified as unmixed and mixed flow, depending on the flow configuration

» In (a) the cross-flow is said to be unmixed since the plate fins force the fluid to flow
through a particular interfin spacing and prevent it from moving in the transverse
direction (i.e., parallel to the tubes). The cross-flow in (b) is said to be mixed since
the fluid now is free to move in the transverse direction

» The presence of mixing in the fluid can have a significant effect on the heat transfer
characteristics of the heat exchanger

Cross-tlow laf

(unmixed) 4 Q
& O

Il « S

Tube flow Tube flow
(unmixed) (unmixed)

Cross-flow —lL-
(mixed) |
-'_-'

(a) Both fluids unmixed (b) One fluid mixed, one fluid unmixed



Compact heat exchanger configurations

l l l Flat tube

=,
S
~
=,
S
M
\ Plate fin

g

Corrugations

(or fins)
/
= (QARRRRANA /

R
I poratet piaes 25

(d) (e)

Compact heat exchanger cores. (a) Fin—tube (flat tubes, continuous plate fins). (b) Fin—tube (circular
tubes, continuous plate fins). (c) Fin—tube (circular tubes, circular fins). (d) Plate—fin (single pass). (e)
Plate—fin (multipass)



Rear-end

header

Shell and tube heat exchanger

The most common type of heat exchanger in industrial applications is the shell-
and-tube heat exchanger, shown in Fig. Shell-and-tube heat exchangers contain a
large number of tubes (sometimes several hundred) packed in a shell with their
axes parallel to that of the shell

Baffles are commonly placed in the shell to force the shell-side fluid to flow
across the shell to enhance heat transfer and to maintain uniform spacing
between the tube

Shell and tube heat exchangers are not suitable for use in automotive and
aircraft applications because of their relatively large size and weight

Shell-and-tube heat exchanger open to some large flow areas called headers at
both ends of the shell, where the tube-side fluid accumulates before entering
the tubes and after leaving them

Tube Shell Shell-side fluid
outlet mlet Baffles In
Tube-side
Front-end fluid
n e Ot

header G

[

Shell Tube

Shell

: uq—Iﬂ

outlet mnlet (a) One-shell pass and two-tube passes



Shell and tube heat exchanger

» Heat exchangers in which all the tubes make one U-turn in the shell, for
example, are called one-shell-pass and two tube- passes heat exchangers

» Heat exchanger that involves two passes in the shell and four passes in the
tubes is called a two-shell-passes and four-tube-passes heat exchanger

Shell-side fluid
In

Tube-side
fluid

lShE” inlet
_ _ |
. = 1 » Tube outlet
( ~ 4 ™~ |
~ s \
i N ; N / ,
| ~—- % ~ -— Tube inlet
l Shell outlet
(a)
lSheII inlet
=~ — == : » Tube outlet
*, _/ L f
| ‘--’ :‘ ".-'_.f
[
[
[
| .-i"_'-\.‘ -
‘._ Y
z" At
',!
~ o .
— = -+— Tube inlet

Shell outlet

I e Out

(¢

I l]+IIl

Out

(a) One-shell pass and two-tube passes

Shell-side fluid
In

(b) Two-shell passes and four-tube passes



Overall heat transfer coefficient

» In a heat exchanger, heat is first transferred from the
hot fluid to the wall by convection, through the wall
by conduction, and from the wall to the cold fluid
again by convection. Any radiation effects are usually
included in the convection heat transfer coefficients

» As shown in Fig. the subscripts i and o represent the
inner and outer surfaces of the heat exchanger.

» For a double-pipe heat exchanger, we have A, = iDL
and A, =nD_L, and the thermal resistance of the wall:

In (D,/D;)
21tk

where k is the thermal conductivity of the wall material and L
is the length of the tube. Then the total thermal resistance

1 N In (D,/D,) ]
I A; 2mkL h,A,

R wall —

RZRtnralzRe'+R U—I_Rr::

wWa
Heat
transfer

Q ~ R IA AT — b I{'AE AT — {JI()A() AT ?11111:11




Overall heat transfer coefficient

» It is convenient to combine all the thermal resistances in the path of heat flow
from the hot fluid to the cold one into a single resistance R
_AT

Q =5 = UAAT = UA; AT = U, A, AT

where U is the overall heat transfer coefficient, whose unit is W/m? - °C, which is
identical to the unit of the ordinary convection coefficient h

1 1 | 1 |
T =R = m + Rwall o ‘IT'FO‘;*’O

=7

UA; =U,A,butU, # U,unless A; = A,

» Overall heat transfer coefficient U of a heat exchanger is meaningless unless the
area on which it is based is specified

» When the wall thickness of the tube is small and the thermal conductivity of the
tube material is high, as is usually the case, the thermal resistance of the tube is
negligible (R, ~~ 0) and the inner and outer surfaces of the tube are almost
identical (A, = A, =A,)



Overall heat transfer coefficient

1T$L+L whereU =U;, = U
Uu h, h, ’
When one of the convection coefficients is much smaller than the other (say, h;, <<
h,), we have 1/h,>> 1/h,, and thus U ~~ h, Therefore, the smaller heat transfer
coefficient creates a bottleneck on the path of heat flow and seriously impedes
heat transfer

Representative values of the overall heat transfer coefficients in
heat exchangers

o

Type of heat exchanger U, W/mZ2 - °C*
Water-to-water 850-1700
Water-to-oil 100-350
Water-to-gasoline or kerosene 300-1000
Feedwater heaters 1000-8500
Steam-to-light fuel oil 200-400
Steam-to-heavy fuel oil 50-200
Steam condenser 1000-6000
Freon condenser (water cooled) 300-1000
Ammonia condenser (water cooled) 800-1400
Alcohol condensers (water cooled) 250-700
Gas-to-gas 10-40
Water-to-air in finned tubes (water in tubes) 30-60f
400-850°1
Steam-to-air in finned tubes (steam in tubes) 30-300°1

400-4000*




Overall heat transfer coefficient

» When the tube is finned on one side to enhance heat transfer, the total heat transfer
surface area on the finned side becomes

AS — Atc-ral — Aﬁn + Aunﬂmled

» For short fins of high thermal conductivity, we can use this total area in the
convection resistance relation R ., = 1/hA, since the fins in this case will be very
nearly isothermal

» If the fin is not isothermal, the effective surface area can be determined by :

As — Aunﬁmled + Nfin Aﬂn

where ng, is the fin efficiency. This way, the temperature drop along the fins is
accounted for. Note that ng, =1 for isothermal fins



Fouling in heat exchangers

Image courtesy : Google



Fouling factor

» The performance of heat exchangers usually deteriorates with time as a result of
accumulation of deposits on heat transfer surfaces.

» The layer of deposits represents additional resistance to heat transfer and causes
the rate of heat transfer in a heat exchanger to decrease

» The net effect of these accumulations on heat transfer is represented by a

fouling factor R, which is a measure of the thermal resistance introduced by
fouling

Fouling in heat exchangers occurs by following factors:

» Precipitation of solid deposits in a fluid on heat transfer surfaces
» Corrosion and other chemical fouling
» Biological fouling

» The fouling factor is obviously zero for a new heat exchanger and increases with
time as the solid deposits build up on the heat exchanger surface

Fouling increases with increasing temperature and decreasing velocity




Fouling factor

For an unfinned shell-and-tube heat exchanger the overall heat transfer coefficient
expression gets modified by considering internal and external fouling factors:

1 1 1 1 Ry In(D,JDy) R, 1
U4, " U4 G4, " a4 2wk A, nd,
With inclusion of surface fouling and fin (extended  Fluid R;, m? - °C/W
surface) effects, the overall heat transfer coefficientis  pistilled water. sea
further modified as below: water, river ;uater,
. . boiler feedwater:
11 fe Fh 1 Below 50°C 0.0001
A~ k), A, Ay, G, Above 50°C 0.0002
Fuel oil 0.0009
Steam (oil-free) 0.0001
In the above expression ¢ and h refers to Refrigerants (liquid) 0.0002
cold and hot side of heat exchanger Refrigerants (vapor) 0.0004
respectively and n, is the overall surface Alcohol vapors 0.0001
efficiency or temperature effectiveness of a Air 0.0004
finned surface

Representative fouling
factors (thermal resistance due
to fouling for a unit surface area)



Fouling factor

1 1 R r:: RF.F: 1
= + +R, + +
UA (Hah’q}c {na A}f (no A}ﬁ (nﬂ hd)ﬁ

The quantity n, in the above equation is the overall surface efficiency or
temperature effectiveness of a finned surface. It is defined such that, for the hot
or cold surface without fouling, the heat transfer rate is

g = NhAT, — T.) h should be replaced by below expression if fouling is considered:

U, = hi(1+ hRY}).

where T, is the base surface temperature and A is the total (fin plus exposed
base) surface area

n=1-2La-ny
nﬂ_ A nf

where A is the entire fin surface area and n;is the efficiency of a single fin. the
ratio of fin surface area to the total surface area has been expressed as A; /A

If a straight or pin fin of length L is used and an adiabatic tip is assumed:

_ tanh(mlL)

Ny = where m = (2h/kt)"? and ¢ is the fin thickness
ml. ' '



Analysis of heat exchangers — general assumptions

» An engineer often lands in a position to select a heat exchanger that will
achieve a specified temperature change in a fluid stream of known mass flow
rate, or to predict the outlet temperatures of the hot and cold fluid streams in a

specified heat exchanger

» Log mean temperature difference (or LMTD) method is best suited for the first
task viz. quantifying temperature changes in a fluid stream of known mass flow

rate

» Effectiveness—NTU method is suited for predicting outlet temperatures of hot
and cold fluid streams

» Heat exchangers are steady flow devices, hence the mass flow rate of each fluid
remains constant, and the fluid properties such as temperature and velocity at
any inlet or outlet remain the same

» The fluid streams experience little or no change in their velocities and

elevations, and thus the kinetic and potential energy changes are negligible.
Within a particular temperature range, specific heat is regarded constant

» Axial heat conduction along the tube is usually insignificant and can be
considered negligible and heat exchanger is insulated



Analysis of heat exchangers — general assumptions

» The first law of thermodynamics requires that the rate of heat transfer from the
hot fluid be equal to the rate of heat transfer to the cold one:

N .. m, = mass flow rates
Q - I”f(—pf{rr. out Lo '1:1) e ( ’

Cpe. Cpy = specific heats
T, qut- Ty ot = OULtlet temperatures
Q= mConlTnm = L ow) T, in- T in = inlet temperatures

where the subscripts ¢ and h stand for cold and hot fluids, respectively

> Heat transfer rate Q is taken to be a positive quantity, and its direction is
understood to be from the hot fluid to the cold one in accordance with the

second law of thermodynamics

» The product of the mass flow rate and the specific heat of a fluid is called heat
capacity
Cp = mCyy and C. = m.C

In a heat exchanger, the fluid with a large heat capacity rate will experience a small
temperature change, and the fluid with a small heat capacity rate will experience a
large temperature change. Doubling the mass flow rate of a fluid while leaving
everything else unchanged will halve the temperature change of that fluid




Analysis of heat exchangers — general assumptions

'O — CC(TC‘. out e in)

S

Q - Cﬁr(Th.in o Th. out)

The only time the temperature rise of a
cold fluid is equal to the temperature
drop of the hot fluid is when the heat
capacity rates of the two fluids are
equal to each other

Hot flmid

Cold flud
C.=C,

AT = &Tl = ,M”z = constant

>
o

I

Inlet

Outlet



Analysis of heat exchangers — general assumptions

» One of the fluids in a condenser or a boiler -~ Condensing fluid |
undergoes a phase-change process, and the rate _ |
of heat transfer is expressed as: .'Q

O = mh
- Iz k Cold fluid

where m is the rate of evaporation or
condensation of the fluid and hg is the
enthalpy of vaporization of the fluid at the

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.o |
specified temperature or pressure |

C=m C, oo when T - 0, so that the heat nlet Outlet
transfer rate Q = m C, AT is a finite quantity (a) Condenser (C; — =)
during phase change process T

» The rate of heat transfer in a heat exchanger can
also be expressed in an analogous manner to
Newton’s law of cooling as:

O = U4, AT \&

m

Ve Hot flmid

e

k Boiling fluid

where U is the overall heat transfer coefficient, A,

is the heat transfer area, and AT, is an i
appropriate average _temperature _difference Tulet Outlet
between the two fluids

(b) Boiler (C, — =)
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Log Mean Temperature Difference method (LMTD)

» The rate of heat transfer in a heat exchanger can be expressed in a manner that is
analogous to Newton’s law of cooling T}

O = U4, AT, N 80=U(T; - T,)dA4,

» In order to develop a relation for the equivalent
average temperature difference (AT,) between AT
the two fluids, consider the parallel-flow double-
pipe heat exchanger shown

I = . = .
» The temperature difference AT between the hot pe ¢ | i? - ?’J”‘ T;m
and cold fluids is large at the inlet of the heat e[ | 1772 Thont Toou
exchanger but decreases exponentially toward K ] 'r-—dAS 5 js
the outlet | e
| : : ¢, out
|
. Hot | LT d4
» Assuming the outer surface of heat exchanger to fuid o T
. . . . 111 — h, ou
be insulated and disregarding changes in _.g — .;}_._‘
potential and kinetic energies, an energy ;i — | | |
balance on fluid for a differential section of heat _AJ
exchanger can be expressed
Cold flud

T

c,1m



Log Mean Temperature Difference method (LMTD)

» An energy balance on each fluid in a differential

section of the heat exchanger is:

30 =
>

— My, (ph (]Th

30

=m,Cp

of heat gain by the cold fluid in that section

IT 8¢

a _—

: nzthh
dTh — CiTC — C](Th = T(.)

dT

c

50

dT.

The rate of heat loss from the hot fluid at any
section of a heat exchanger is equal to the rate

50
_mc(pc
¢ .1_' n 1
my Cyy m(,(pc

» The rate of heat transfer in the differential
section of the heat exchanger is:

30

U(T;, — T,) dA,

T A
Th m N F : .
N 80=U(T, - T.)dA,
| ! ‘Th, out
AT
| Tc?, out
I
I
:
/ c I 1 AT = in TC, in
' I _
cimn | I A‘TZ Th, out I ¢, out
I I
1 —-: Il-— dA, 2 A4
I [
| : : Tc, out
I
Hot | | 1 dA,
flu — | Th, out
Ty in 1 | |




Log Mean Temperature Difference method (LMTD)

1 1 't
dT—iT—iT—T——BO e Iy in N '
h ¢ A ) (m;,(p,, m, Cpc) EQ.1 i N3 00=U(T, - T,)dA,
» The rate of heat transfer in the differential "
section of the heat exchanger is: h, out
AT T
. | c, out
8Q = U(I; — 1) dfls Eq.2 |
|
On substitution of Eq.2 in Eq.1 . 1A T,
¢ in éL : : A‘TZ - Th, out I ¢, out
d( I, h Tc) 1 | | - ! >
= —U d—l( —= —— ) 1 . L_dAS 2 4,
Ti — T, m, Cow m C, | Ly
¢, out
|
» Integrating from the inlet of the heat exchanger gt | L1 dd,
to its outlet fluid — | T} out
| —) = D>
Diase — Lot 1 | T} in — 1 | |
In = —UA, + E 3 ,GJ
By i — Lo i H?;, Cph 177 (
Cold flmd
But from first law of thermodynamics it is known that: T,

Q — mhcph(rh. in Th.c-ut) Q = m (pc( c.ont L. 1'11) Eq.4
Contd---



Log Mean Temperature Difference method (LMTD)

On substitution of Eq.4 in right hand side of Eq.3 and further simplification gives

i J I I;‘,Ollt
QO = U4 "ﬁTlm AT AT T .
/ — - H t >
where AT, isgivenby: AT, = S — o | _ q\
h,in —
» AT, is the log mean temperature difference, L‘ T out

which is the suitable form of the average AT) Tcddﬂuid
AL =T, - T

temperature difference for use in the analysis of | |
heat exchangers AT, =T, T

¢, out

» AT, and AT, represents the temperature difference

between two fluids at inlet and outlet of a heat (@ Parallel-flow heat exchangers

exchanger Cold

» AT, is obtained by tracing the actual temperature fjl“mf
profile of the fluids along the heat exchanger and is  Hot AT,
an exact representation of the average fwd | -— q
temperature difference between the hot and cold 7 - — | ;:
fluids. AT, truly represents the exponential decay ’
of local temperature difference AT,

» AT, < AT, .. Therefore AT, will overestimate the Lo A= Din = o ou

AL =T = Lo

range of heat transfer

(b) Counter-flow heat exchangers



LMTD — Counter flow heat exchangers

» Hot and cold fluids enter the heat exchanger T
from opposite ends, and the outlet temperature 7,
of the cold fluid in this case may exceed the
outlet temperature of the hot fluid

Hot flmd

¢, out

» In the limiting case, the cold fluid will be heated
to the inlet temperature of the hot fluid.
However, the outlet temperature of the cold
fluid can never exceed the inlet temperature of
the hot fluid, since this would be a violation of
the second law of thermodynamics.

» The relation above for the LMTD developed
using a parallel-flow heat exchange is equally
applicable for counter flow heat exchanger

» AT, and AT, are expressed as shown below: Hot
fluid |
— _ T, .
AT 1 1 h,in I::‘ out h,in
AT,=T1T, .—T .
2 h,out ¢, 1n AT,



LMTD — Counter flow heat exchangers

» For specified inlet and outlet temperatures, the log mean temperature
difference for a counter-flow heat exchanger is always greater than

that for a parallel-flow heat exchanger Eo.lj
1
Tc? in
» AT, > AT, pr and thus a smaller surface Hot ’ AT,
’ ’ . O &
area (and thus a smaller heat exchanger) is 4 .4 | q
needed to achieve a specified heat transfer .5 p—— —— D)—=
rate in a counter-flow heat exchanger T - | T, out
» In a counter-flow heat exchanger, the
temperature difference between the hot and AT, 7 P
the cold fluids will remain constant along the e out 1~ “hin ™ “c out
heat exchanger when the heat capacity rates AL =1y o~ Loia

of the two fluids are equal

» AT = constant when (C, =C.or m,C,, = mC, ). Then we have AT, = AT,, and the
LMTD relation gives AT, = %, which is indeterminate. It can be shown by the
application of L'Hdpital’s rule that in this case we have AT, = AT, = AT,



Multipass and Cross-Flow Heat Exchangers:
Use of a Correction Factor

LMTD relations for cross-flow and multipass shell-and-tube heat exchangers, are
too complicated because of the complex flow conditions. Hence the following

relation is used for cross flow and multi pass heat exchangers from the expression
of counter flow AT,.

AThu =F ATlm. CF

F is the correction factor, which depends on the geometry of the heat exchanger

AT, cris the log mean temperature difference for the case AT.=T.. - T

’ . . - 1 h,1n ¢, out
of a counter-flow heat exchanger with the same inlet and
outlet temperatures AVES PRI S

The correction factor is less than unity for a cross-flow and multipass shell and-
tube heat exchanger, F<1

Correction factor F for a heat exchanger is a measure of deviation of the AT,
from the corresponding values for the counter-flow case



Multipass and Cross-Flow Heat Exchangers:
Use of a Correction Factor

Two temperature ratios defined are: Coldl /)
) flud
p L — 1 Tl — Tl- (m Cp)mbe side  Hot F<\A‘T3
N Tl — I R = L — 0 o (m C:p)rshell cide il:lg: Cross-flow or multipass -
T shell-and-tube heat exchanger .Th t
where the subscripts 1 and 2 represent the inlet J o
and outlet, respectively. For a shell-and-tube AT,
heat exchanger, T and t represent the shell- and iTaom

tube-side temperatures, respectively
Heat transfer rate:

Q - UASFATIm.CF

P ranges from O to 1. The value of R, on the other

hand, ranges from 0 to infinity, with R = O B AT _ AL -AL
. wae Im.CF In(AT,/AT,)

corresponding to the phase-change WAL

(condensation or boiling) on the shell-side and R AT =T ~T

— oo to phase-change on the tube side

ATZ - Th,out =k

c,in

F is determined from charts



Correction factor F charts for common shell-and-tube and cross-flow heat exchangers
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(b) Two-shell passes and 4, 8, 12, etc. (any multiple of 4), tube passes



Correction factor F charts for common shell-and-tube and cross-flow heat exchangers
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(d) Single-pass cross-flow with one fluid mived and the other unmixed



The effectiveness — NTU method

s LMTD is used in heat exchanger analysis when the inlet and the outlet temperatures
of the hot and cold fluids are known or can be determined from an energy balance. This
method is very suitable for determining the size of a heat exchanger to realize
prescribed outlet temperatures when the mass flow rates and the inlet and outlet
temperatures of the hot and cold fluids are specified

s A second kind of problem encountered in heat exchanger analysis is the
determination of the heat transfer rate and the outlet temperatures of the hot and cold
fluids for prescribed fluid mass flow rates and inlet temperatures when the type and
size of the heat exchanger are specified.

“*The heat transfer surface area A, of the heat exchanger in the second case is known,
but the outlet temperatures are not known. Here the task is to determine the heat
transfer performance of a specified heat exchanger or to determine if a heat exchanger
available in storage will do the job

s Effectiveness—NTU method, which greatly simplified heat exchanger analysis is
based on dimensionless parameter called heat transfer effectiveness €

0 Actual heat transfer rate
Omax  Maximum possible heat transfer rate

E



The effectiveness — NTU method

0 Actual heat transfer rate
Omax  Maximum possible heat transfer rate

E

»The actual heat transfer rate in a heat exchanger can be determined from an
energy balance on the hot or cold fluids and can be expressed as:

Q = CC(TC. out Le. in) == Ch( Th. in Th. our)

where C_and C, are heat capacities of hot and cold fluids respectively

C. = m.C, and C;, = m.C,,
»To determine the maximum possible heat transfer rate in a heat exchanger,
we first recognize that the maximum temperature difference in a heat
exchanger is the difference between the inlet temperatures of the hot and cold
fluids as:

ﬁTmaX - Th.in — dein
»The heat transfer in a heat exchanger will reach its maximum value when
(1) the cold fluid is heated to the inlet temperature of the hot fluid or (2) the
hot fluid is cooled to the inlet temperature of the cold fluid. These two
limiting conditions will not be reached simultaneously unless the heat
capacity rates of the hot and cold fluids are identical (i.e., C_ = C})




The effectiveness — NTU method

>»The fluid with smaller heat capacity rate will experience a larger

temperature change, and thus it will be the first to experience the maximum
temperature, at which point the heat transfer will come to a halt. Therefore,
the maximum possible heat transfer rate in a heat exchanger is:

Qmax — 11]1'11(T h.in Tc. 1'11)

where Cpy, is the smaller of C;, = m;Cy, and C, = m.C,,.

»The effectiveness of a heat exchanger enables us to determine the heat
transfer rate without knowing the outlet temperatures of the fluids

Qf — SQma:{ = &C Illirl(Tﬁr. in Le. 1'11)

»The effectiveness of a heat exchanger depends on the geometry of the heat
exchanger as well as the flow arrangement

» Different types of heat exchangers have different effectiveness relations



The effectiveness — Parallel flow heat exchanger

During LMTD analysis we derived that:

In I h.out 1 cout 174 ( 1 n | )
Th. in TC in H?;, (ph mc(p(

Since C. = m.Cp. and Cj, = m.C

The above LMTD expression can be written as:

Th. out Tc out l A ( C )

ph

In = S S Eq.1

T T, o

h.in C.1n ( C

However we know from the actual heat transfer expression:

Cc( Tc, out ( i) = C ;,(T;, in T,.,. aut) Rearranging this gives below equation
C,.
T, ot = Thta — 7 e oit — Tein) Eq.2
C h

Adding and subtracting T

¢in iN L.H.S numerator of Eq.1 and also substituting for T .,
from Eg.2 in Eq.1 gives:

Contd---



The effectiveness — Parallel flow heat exchanger

Th.m e Tc i T Tc in Tc. out (} ( . out . in) UA
! /Ll

1 — (1 - C")
n = — =
Th.m_ TC in Cc (h,
which simplifies to:
In|1— (1 + CC) Lo ow = Tem e H ( 1 + (—) Eq.3
‘ Ch, Th. in Tc in Ce . Ch,
From the definition of effectiveness we know that:
() Cc( I c.ont  Le. m) I c.out TC in Cj_‘[li’ﬂ
E=—T"=— ) T T = g— Eq.4
Qnm CainlTh, 10 — Te, in) h.in — e in Ce

Substituting Eq.4 in L.H.S of Eq.3

UA, ( e
1= exp|— C (1 +C_,)

( 1 4§ Cc) Cmiu
Ch Cc’

Sparallel flow

Contd---



The effectiveness — Parallel flow heat exchanger

Taking either C.or C, to be C,,;,, (both approaches give the same result), the relation
above can be expressed more conveniently as

Uds [ Cuin)
| — exp | — 5 (l n 111111)
Cmin Cma_‘{_:_
8parallel flow C .
1 + min
C

max

»C... is the smaller heat capacity ratio and C,,,, is the larger one, and it makes no
difference whether C, .. belongs to the hot or cold fluid.

»UAs /C_. is a dimensionless term and is called number of transfer units (NTU)

UA, UA,
Cm:in ( m (p )1111'11

min

NTU =

»>For a specified values of U and C,;, the value of NTU is a measure of the heat
transfer surface area A.. Thus, the larger the NTU, the larger the heat
exchanger

In heat exchanger analysis, another dimensionless Clin
quantity called the capacity ratio c as =) c=

e = function (UA,/C . Cuin/Cuax) = function (NTU. ¢)

“max




Table.l. Effectiveness relation for heat exchangers

Heat exchanger
type

Effectiveness relation

1 Double pipe:
Parallel-flow

Counter-flow

2 Shell and tube:
One-shell pass
2,4, ...tube
passes

3 Cross-flow
(single-pass)
Both fluids
unmixed
Cinax Mixed,
Crrin Unmixed
Crrin Mixed,
Crrax Unmixed

4 All heat

exchangers
withc =0

1 —exp[—NTU(1 + c)]
= 1=ke
_ 1 —exp[=NTU(1 —¢)]
1 —cexp[—-NTU(1 —c)]

e

— _1+exp[-NTUVI + CZ]%_l
8=2{1+ + V1 + ¢2 —_—
N e e [-NTUVI ¥ 2

0.22
e=1—exp {NTL; [exp (—c NTUO-78) — 1]}

g = %(1 —exp {1—c[1 — exp (—=NTU)I}D
e=1—exp {—%[1 —exp (—c¢ NTU)]}

g=1—exp(—NTU)




Table.ll. Effectiveness relation for heat exchangers

Heat exchanger type NTU relation

1 Double-pipe: _In[1-e(1+¢)]

Parallel-flow NTU =
1+rc

1 e— 1"

Counter-flow NTU = In ( )

c—1 ec— 1
2 Shell and tube: e
One-shell pass NTU = —%ﬁ. In (2/8 . \H_Cg)
V1+ce 2e—1—-—c+ V1+ c?

2,4, ...tube passes
3 Cross-flow (single-pass)

Cmax mixed, NTU =—In|1 + In (IC— eC)

Crnin Unmixed -

Crin Mixed, -

C,a UNMixed NTU = _n Leln (1c e) + 11
4 All heat exchangers o B

withc =0 NTU = —In(1 — &)

The effectiveness relations given in Table. | and Table. Il are equivalent.
Table.l gives the effectiveness (g) directly when NTU is known and the
numerical relations in Table.ll give NTU directly when € is known




General observations on effectiveness relations

> The value of the effectiveness ranges from 0 to 1. It increases rapidly with NTU for
small values (up to about NTU 1.5) but rather slowly for larger values

»Heat exchanger with a large NTU (usually larger than 3) and thus a large size cannot
be justified economically, since a large increase in NTU in this case corresponds to a
small increase in effectiveness

»Thus, a heat exchanger with a very high effectiveness may be highly desirable from a
heat transfer point of view but rather undesirable from an economical point of view

100 | — 100 I =
RS il A s P
- . $l/ o =
\\C & \C 0‘&:\4 //4/ ) ]
80 B g 80 . SV 1
O 9= YA A
3 A oD X &'{p e
w / / 0/ w 60 /87 ,}Q
A 60 7 0.75. @ / ’
: V/ 5y : /
5 40 T 1 ' | '§ 40 . Shell fluid | -
= Tube i i J Tube ["I |
e fluid_| — I e fluid | -—
20 / —=(1 :: I ')—D_ 20 —»( LJ — — — , D
} Shell fluid i {
0 . : . \ . . \ : 0 | 1 1 1 I 1 | I
1 2 3 4 5 1 2 3 4 5
Number of transfer units NTU = A U/C;, Number of transfer units NTU = A U/C;

(a) Parallel-flow (b) Counter-flow Contd---
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(f) Cross-flow with one fluid mixed and the

other unmixed




General observations on effectiveness relations

»For a given NTU and capacity ratio ¢ = C,;,, /C,,. the counter-flow heat
exchanger has the highest effectiveness, followed closely by the cross-flow heat
exchangers with both fluids unmixed. The lowest effectiveness values are

encountered in parallel-flow heat exchangers

»The effectiveness of a heat exchanger is independent of the capacity ratio, ¢ for

NTU values of less than about 0.3

1

0.5 -

Counter-flow

Cross-flow with
both fluids unmixed

¥

Parallel-flow

(fore=1)

NTU = D:‘ijlcmjﬂ Contd"'



General observations on effectiveness relations

»The value of the capacity ratio, ¢ ranges between 0 and 1. For a given NTU, the
effectiveness becomes a maximum for ¢ = 0 and a minimum for ¢ = 1. The case ¢
C,.n /C,.c = 0 corresponds to C_, —>°°, which is realized during a phase-change
process in a condenser or boiler. All effectiveness relations in this case reduce to:

€= Epax — 1 — eXp(—NTU)

max

1

N g=1-¢g NIU

(All heat exchangers
0.5 - with ¢ = 0)




